scholarly journals Secondary Flow in Smooth and Rough Turbulent Circular Pipes: Turbulence Kinetic Energy Budgets

Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 448
Author(s):  
Paolo Orlandi ◽  
Sergio Pirozzoli

Direct Numerical Simulations have been performed for turbulent flow in circular pipes with smooth and corrugated walls. The numerical method, based on second-order finite discretization together with the immersed boundary technique, was validated and applied to various types of flows. The analysis is focused on the turbulence kinetic energy and its budget. Large differences have been found in the near-wall region at low Reynolds number. The change in the near-wall turbulent structures is responsible for increase of drag and turbulence kinetic energy. To investigatselinae the effects of wall corrugations, the velocity fields have been decomposed so as to isolate coherent and incoherent motions. For corrugated walls, we find that coherent motions are strongest for walls covered with square bars aligned with the flow direction. In particular, the coherent contribution is substantial when the bars are spaced apart by a distance larger than their height. Detailed analysis of the turbulence kinetic energy budget shows for this set-up a very different behavior than for the other types of corrugations.

The time-dependent structure of the wall region of separating, separated, and reattaching flows is considerably different than that of attached turbulent boundary layers. Large-scale structures, whose frequency of passage scales on the freestream velocity and shear layer thickness, produce large Reynolds shearing stresses and most of the turbulence kinetic energy in the outer region of the shear layer and transport it into the low velocity reversed flow next to the wall. This outer flow impresses a near wall streamwise streaky structure of spanwise spacing λ z simultaneously across the wall over a distance of the order of several λ z . The near wall structures produce negligible Reynolds shear stresses and turbulence kinetic energy.


Author(s):  
B. Song ◽  
R. S. Amano

A numerical study on three-dimensional turbulent flow in a turbine-stator passage is presented in this paper. The standard κ–ε model with the one equation, near-wall model (SKE) and the Launder-Sharma model (L-S) are used for turbulence computations. The computational results obtained using these models were compared in order to investigate the turbulence effect in the near-wall region. The governing equations in a generalized curvilinear coordinate system are discretized by using the SIMPLEC method with non-staggered grids. The oscillation of pressure and velocity due to non-staggered grids is eliminated by using the interpolation method suggested by Rhie and Chow (1983). The predicted midspan pressure coefficients using SKE and L-S models are compared with experimental data. It was shown that the present results obtained by using both models are satisfactory. Computations were then extended to cover the entire blade-to-blade flow passage, and the three-dimensional effects on pressure and turbulence kinetic energy were evaluated. It was observed that two turbulence models predict similar results for the pressure and velocity but these predict different results in the turbulence kinetic energy.


Author(s):  
B. Song ◽  
R. S. Amano ◽  
S. Sitarama ◽  
B. Lin

Numerical study on a three-dimensional turbulent flow in a turbine-rotor passage is presented in this paper. The standard k-ε model was used for the first phase of the turbulence computations. The computations were further extended by employing the full Reynolds-stress closure model (RSM). The computational results obtained using these models were compared in order to investigate the turbulence effect in the near-wall region. The governing equations in a generalized curvilinear coordinate system are discretized by using the SIMPLEC method with non-staggered grids. The oscillations in pressure and velocity due to non-staggered grids are eliminated by using a special interpolation method. The predicted midspan pressure coefficients using the k-ε model and the RSM are compared with the experimental data. It was shown that the present results obtained by using either model are fairly reasonable. Computations were then extended to cover the entire blade-to-blade flow passage, and the three-dimensional effects on pressure and turbulence kinetic energy were evaluated. It was observed that the two turbulence models predict different results for the turbulence kinetic energy. This variation was identified as being related to some non-isotropic turbulence occurring near the blade surface due to the severe acceleration of the flow. It was thus proven that the models based on the RSM give more realistic predictions for highly turbulent cascade flow computations than a Boussinesq viscosity model.


2014 ◽  
Vol 760 ◽  
pp. 304-312 ◽  
Author(s):  
Farid Karimpour ◽  
Subhas K. Venayagamoorthy

AbstractIn this study, we revisit the consequence of assuming equilibrium between the rates of production ($P$) and dissipation $({\it\epsilon})$ of the turbulent kinetic energy $(k)$ in the highly anisotropic and inhomogeneous near-wall region. Analytical and dimensional arguments are made to determine the relevant scales inherent in the turbulent viscosity (${\it\nu}_{t}$) formulation of the standard $k{-}{\it\epsilon}$ model, which is one of the most widely used turbulence closure schemes. This turbulent viscosity formulation is developed by assuming equilibrium and use of the turbulent kinetic energy $(k)$ to infer the relevant velocity scale. We show that such turbulent viscosity formulations are not suitable for modelling near-wall turbulence. Furthermore, we use the turbulent viscosity $({\it\nu}_{t})$ formulation suggested by Durbin (Theor. Comput. Fluid Dyn., vol. 3, 1991, pp. 1–13) to highlight the appropriate scales that correctly capture the characteristic scales and behaviour of $P/{\it\epsilon}$ in the near-wall region. We also show that the anisotropic Reynolds stress ($\overline{u^{\prime }v^{\prime }}$) is correlated with the wall-normal, isotropic Reynolds stress ($\overline{v^{\prime 2}}$) as $-\overline{u^{\prime }v^{\prime }}=c_{{\it\mu}}^{\prime }(ST_{L})(\overline{v^{\prime 2}})$, where $S$ is the mean shear rate, $T_{L}=k/{\it\epsilon}$ is the turbulence (decay) time scale and $c_{{\it\mu}}^{\prime }$ is a universal constant. ‘A priori’ tests are performed to assess the validity of the propositions using the direct numerical simulation (DNS) data of unstratified channel flow of Hoyas & Jiménez (Phys. Fluids, vol. 18, 2006, 011702). The comparisons with the data are excellent and confirm our findings.


Author(s):  
Gaetano Maria Di Cicca ◽  
Angelo Iollo ◽  
Pier Giorgio Spazzini ◽  
Gaetano Iuso ◽  
Michele Onorato

Experimental data of a turbulent boundary layer developing over a flat plate, obtained by Digital Particle Image Velocimetry (DPIV) technique, are analyzed making use of proper orthogonal decomposition (POD). Different POD definitions have been used in order to check their ability in educing the various structures dominating the near wall region. Results show a specific sensitivity depending on the POD definition adopted.


Sign in / Sign up

Export Citation Format

Share Document