scholarly journals Existence and Uniqueness Results of Coupled Fractional-Order Differential Systems Involving Riemann–Liouville Derivative in the Space Wa+γ1,1(a,b)×Wa+γ2,1(a,b) with Perov’s Fixed Point Theorem

2021 ◽  
Vol 5 (4) ◽  
pp. 217
Author(s):  
Noura Laksaci ◽  
Ahmed Boudaoui ◽  
Kamaleldin Abodayeh ◽  
Wasfi Shatanawi ◽  
Taqi A. M. Shatnawi

This paper is devoted to studying the existence and uniqueness of a system of coupled fractional differential equations involving a Riemann–Liouville derivative in the Cartesian product of fractional Sobolev spaces E=Wa+γ1,1(a,b)×Wa+γ2,1(a,b). Our strategy is to endow the space E with a vector-valued norm and apply the Perov fixed point theorem. An example is given to show the usefulness of our main results.

2021 ◽  
Vol 25 (1) ◽  
pp. 1-30
Author(s):  
Choukri Derbazi ◽  
Zidane Baitiche ◽  
Mouffak Benchohra ◽  
Gaston N'guérékata

The main purpose of this paper is to study the existence, uniqueness, Ea-Ulam stability results, and other properties of solutions for certain classes of nonlinear fractional differential equations involving the ps-Caputo derivative with initial conditions. Modern tools of functional analysis are applied to obtain the main results. More precisely using Weissinger's fixed point theorem and Schaefer's fixed point theorem the existence and uniqueness results of solutions are proven in the bounded domain. While the well known Banach fixed point theorem coupled with Bielecki type norm are used with the end goal to establish sufficient conditions for existence and uniqueness results on unbounded domains. Meanwhile, the monotone iterative technique combined with the method of upper and lower solutions is used to prove the existence and uniqueness of extremal solutions. Furthermore, by means of new generalizations of Gronwall's inequality, different kinds of Ea-Ulam stability of the proposed problem are studied. Finally, as applications of the theoretical results, some examples are given to illustrate the feasibility and correctness of the main results.


2020 ◽  
Vol 23 (2) ◽  
pp. 591-599 ◽  
Author(s):  
Cong Wu ◽  
Xinzhi Liu

AbstractIn this paper, we study the continuation of solutions to systems of Caputo fractional order differential equations. The continuation is constructed and proven by using the Schauder Fixed Point Theorem. As a necessary prerequisite to the continuation, the existence and uniqueness results generalized for systems are also reviewed.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 476
Author(s):  
Jiraporn Reunsumrit ◽  
Thanin Sitthiwirattham

In this paper, we propose sequential fractional delta-nabla sum-difference equations with nonlocal fractional delta-nabla sum boundary conditions. The Banach contraction principle and the Schauder’s fixed point theorem are used to prove the existence and uniqueness results of the problem. The different orders in one fractional delta differences, one fractional nabla differences, two fractional delta sum, and two fractional nabla sum are considered. Finally, we present an illustrative example.


Author(s):  
Mohammed A. Almalahi ◽  
Satish K. Panchal

AbstractIn this article we present the existence and uniqueness results for fractional integro-differential equations with ψ-Hilfer fractional derivative. The reasoning is mainly based upon different types of classical fixed point theory such as the Mönch fixed point theorem and the Banach fixed point theorem. Furthermore, we discuss Eα -Ulam-Hyers stability of the presented problem. Also, we use the generalized Gronwall inequality with singularity to establish continuous dependence and uniqueness of the δ-approximate solution.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Azizollah Babakhani ◽  
Dumitru Baleanu ◽  
Ravi P. Agarwal

We prove the existence and uniqueness of solutions for two classes of infinite delay nonlinear fractional order differential equations involving Riemann-Liouville fractional derivatives. The analysis is based on the alternative of the Leray-Schauder fixed-point theorem, the Banach fixed-point theorem, and the Arzela-Ascoli theorem inΩ={y:(−∞,b]→ℝ:y|(−∞,0]∈ℬ}such thaty|[0,b]is continuous andℬis a phase space.


Author(s):  
Manzoor Ahmad ◽  
Akbar Zada ◽  
Xiaoming Wang

AbstractIn this article, we study the existence and uniqueness of solutions of a switched coupled implicit ψ-Hilfer fractional differential system. The existence and uniqueness results are obtained by using fixed point techniques. Further, we investigate different kinds of stability such as Hyers–Ulam stability and Hyers–Ulam–Rassias stability. Finally, an example is provided to illustrate the obtained results.


Author(s):  
Mohamed I. Abbas

This paper is devoted to initial value problems for impulsive fractional differential equations of Caputo–Fabrizio type fractional derivative. By means of Banach’s fixed point theorem and Schaefer’s fixed point theorem, the existence and uniqueness results are obtained. Finally, an example is given to illustrate one of the main results.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Nichaphat Patanarapeelert ◽  
Thanin Sitthiwirattham

The existence and uniqueness results of two fractional Hahn difference boundary value problems are studied. The first problem is a Riemann-Liouville fractional Hahn difference boundary value problem for fractional Hahn integrodifference equations. The second is a fractional Hahn integral boundary value problem for Caputo fractional Hahn difference equations. The Banach fixed-point theorem and the Schauder fixed-point theorem are used as tools to prove the existence and uniqueness of solution of the problems.


Author(s):  
Natthaphong Thongsalee ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

AbstractIn this paper we study a new class of Riemann-Liouville fractional differential equations subject to nonlocal Erdélyi-Kober fractional integral boundary conditions. Existence and uniqueness results are obtained by using a variety of fixed point theorems, such as Banach fixed point theorem, Nonlinear Contractions, Krasnoselskii fixed point theorem, Leray-Schauder Nonlinear Alternative and Leray-Schauder degree theory. Examples illustrating the obtained results are also presented.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Karim Guida ◽  
Lahcen Ibnelazyz ◽  
Khalid Hilal ◽  
Said Melliani

In this paper, we investigate the solutions of coupled fractional pantograph differential equations with instantaneous impulses. The work improves some existing results and contributes toward the development of the fractional differential equation theory. We first provide some definitions that will be used throughout the paper; after that, we give the existence and uniqueness results that are based on Banach’s contraction principle and Krasnoselskii’s fixed point theorem. Two examples are given in the last part to support our study.


Sign in / Sign up

Export Citation Format

Share Document