scholarly journals Role of Magnetic Fields in Ram Pressure Stripped Galaxies

Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 116
Author(s):  
Ancla Müller ◽  
Alessandro Ignesti ◽  
Bianca Poggianti ◽  
Alessia Moretti ◽  
Mpati Ramatsoku ◽  
...  

Ram-pressure stripping is a crucial evolutionary driver for cluster galaxies and jellyfish galaxies characterized by very extended tails of stripped gas, and they are the most striking examples of it in action. Recently, those extended tails are found to show ongoing star formation, raising the question of how the stripped, cold gas can survive long enough to form new stars outside the stellar disk. In this study, we summarize the most recent results achieved within the GASP collaboration to provide a holistic explanation for this phenomenon. We focus on two textbook examples of jellyfish galaxies, JO206 and JW100, for which, via multi-wavelength observations from radio to X-ray and numerical simulations, we have explored the different gas phases (neutral, molecular, diffuse-ionized, and hot). Based on additional multi-phase gas studies, we now propose a scenario of stripped tail evolution including all phases that are driven by a magnetic draping sheath, where the intracluster turbulent magnetized plasma condenses onto the galaxy disk and tail and produces a magnetized interface that protects the stripped galaxy tail gas from evaporation. In such a scenario, the accreted environmental plasma can cool down and eventually join the tail gas, hence providing additional gas to form stars. The implications of our findings can shed light on the more general scenario of draping, condensation, and cooling of hot gas surrounding cold clouds that is fundamental in many astrophysical phenomena.

2022 ◽  
Vol 924 (2) ◽  
pp. 64
Author(s):  
Alessandro Ignesti ◽  
Benedetta Vulcani ◽  
Bianca M. Poggianti ◽  
Rosita Paladino ◽  
Timothy Shimwell ◽  
...  

Abstract Ram pressure stripping is a crucial evolutionary driver for cluster galaxies. It is thought to be able to accelerate the evolution of their star formation, trigger the activity of their central active galactic nucleus (AGN) and the interplay between galactic and environmental gas, and eventually dissipate their gas reservoirs. We explored the outcomes of ram pressure stripping by studying the nonthermal radio emission of the jellyfish galaxy JW100 in the cluster A2626 (z = 0.055), by combining LOw Frequency Array, MeerKAT, and Very Large Array observations from 0.144 to 5.5 GHz. We studied the integrated spectra of the stellar disk, the stripped tail, and the AGN; mapped the spectral index over the galaxy; and constrained the magnetic field intensity to between 11 and 18 μG in the disk and <10 μG in the tail. The stellar disk radio emission is dominated by a radiatively old plasma, likely related to an older phase of a high star formation rate. This suggests that the star formation was quickly quenched by a factor of 4 in a few 107 yr. The radio emission in the tail is consistent with the stripping scenario, where the radio plasma that originally accelerated in the disk is subsequently displaced in the tail. The morphology of the radio and X-ray emissions supports the scenario of the accretion of magnetized environmental plasma onto the galaxy. The AGN nonthermal spectrum indicates that relativistic electron acceleration may have occurred simultaneously with a central ionized gas outflow, thus suggesting a physical connection between the two processes.


2019 ◽  
Vol 15 (S356) ◽  
pp. 280-284
Author(s):  
Angela Bongiorno ◽  
Andrea Travascio

AbstractXDCPJ0044.0-2033 is one of the most massive galaxy cluster at z ∼1.6, for which a wealth of multi-wavelength photometric and spectroscopic data have been collected during the last years. I have reported on the properties of the galaxy members in the very central region (∼ 70kpc × 70kpc) of the cluster, derived through deep HST photometry, SINFONI and KMOS IFU spectroscopy, together with Chandra X-ray, ALMA and JVLA radio data.In the core of the cluster, we have identified two groups of galaxies (Complex A and Complex B), seven of them confirmed to be cluster members, with signatures of ongoing merging. These galaxies show perturbed morphologies and, three of them show signs of AGN activity. In particular, two of them, located at the center of each complex, have been found to host luminous, obscured and highly accreting AGN (λ = 0.4−0.6) exhibiting broad Hα line. Moreover, a third optically obscured type-2 AGN, has been discovered through BPT diagram in Complex A. The AGN at the center of Complex B is detected in X-ray while the other two, and their companions, are spatially related to radio emission. The three AGN provide one of the closest AGN triple at z > 1 revealed so far with a minimum (maximum) projected distance of 10 kpc (40 kpc). The discovery of multiple AGN activity in a highly star-forming region associated to the crowded core of a galaxy cluster at z ∼ 1.6, suggests that these processes have a key role in shaping the nascent Brightest Cluster Galaxy, observed at the center of local clusters. According to our data, all galaxies in the core of XDCPJ0044.0-2033 could form a BCG of M* ∼ 1012Mȯ hosting a BH of 2 × 108−109Mȯ, in a time scale of the order of 2.5 Gyrs.


2016 ◽  
Vol 82 (3) ◽  
Author(s):  
John A. ZuHone ◽  
E. Roediger

The most massive baryonic component of galaxy clusters is the ‘intracluster medium’ (ICM), a diffuse, hot, weakly magnetized plasma that is most easily observed in the X-ray band. Despite being observed for decades, the macroscopic transport properties of the ICM are still not well constrained. A path to determine macroscopic ICM properties opened up with the discovery of ‘cold fronts’. These were observed as sharp discontinuities in surface brightness and temperature in the ICM, with the property that the denser side of the discontinuity is the colder one. The high spatial resolution of the Chandra X-ray Observatory revealed two puzzles about cold fronts. First, they should be subject to Kelvin–Helmholtz instabilities, yet in many cases they appear relatively smooth and undisturbed. Second, the width of the interface between the two gas phases is typically narrower than the mean free path of the particles in the plasma, indicating negligible thermal conduction. It was thus realized that these special characteristics of cold fronts may be used to probe the properties of the cluster plasma. In this review, we will discuss the recent simulations of cold fronts in galaxy clusters, focusing on those which have attempted to use these features to constrain ICM physics. In particular, we will examine the effects of magnetic fields, viscosity, and thermal conductivity on the stability properties and long-term evolution of cold fronts. We conclude with a discussion on what important questions remain unanswered, and the future role of simulations and the next generation of X-ray observatories.


2006 ◽  
Vol 2 (S237) ◽  
pp. 470-470
Author(s):  
S. Ryś ◽  
K. T. Chyży ◽  
M. Weżgowiec ◽  
M. Ehle ◽  
R. Beck

AbstractThe Virgo Cluster spiral NGC 4569 is known for its compact starburst in the core and unusual outflow of Hα emitting gas perpendicular to the galaxy disk. Recent radio polarimetric observations with the Effelsberg telescope reveal huge magnetized outflows. Preliminary results of our XMM-Newton observations uncover not only hot gas in the disk but also an extensive X-ray envelope around it. We investigate the possibility of starburst-induced galactic outflows in various gas phases and cluster influence on the galaxy evolution.


2022 ◽  
Vol 6 (1) ◽  
pp. 16
Author(s):  
Bhavya Pardasani ◽  
Andrew Wetzel ◽  
Jenna Samuel

Abstract In order to investigate the role of the host halo in quenching satellite galaxies, we have characterized a single Milky Way-like host galaxy from the FIRE simulations from z = 0–1.76 by quantifying the gas density of the host halo environment with respect to distance from the host and galactocentric latitude. The gas density decreases with increasing distance from the host according to a broken power law. At earlier times (2–10 Gyr ago), the density in the inner regions of the host halo was enhanced relative to z = 0. Thus, earlier infalling satellites experienced more ram-pressure and were more efficiently quenched compared to later infalling satellites. We also find that in the inner halo (<150 kpc) the density is 2–3 times larger close to the plane of the host galaxy disk versus above or below the disk, so satellites that orbit at low galactocentric latitudes may be more efficiently quenched.


2011 ◽  
Vol 7 (S284) ◽  
pp. 213-217
Author(s):  
Renée C. Kraan-Korteweg ◽  
Michelle E. Cluver

AbstractHIZOA J0836–43 is one of the most H i-massive galaxies in the local (z < 0.1) Universe. Not only are such galaxies extremely rare, but this “coelacanth” galaxy exhibits characteristics – in particular its active, inside-out stellar disk-building – that appear more typical of past (z ~ 1) star formation, when large gas fractions were more common. Unlike most local giant H i galaxies, it is actively star forming. Moreover, the strong infrared emission is not induced by a merger event or AGN, as is commonly found in other local LIRGs. The galaxy is suggestive of a scaled-up version of local spiral galaxies; its extended star formation activity likely being fueled by its large gas reservoir and, as such, can aid our understanding of star formation in systems expected to dominate at higher redshifts. The multi-wavelength imaging and spectroscopic observations that have led to these deductions will be presented. These include NIR (JHK) and MIR (Spitzer; 3 – 24μm) imaging and photometry, MIR spectroscopy, ATCA H i-interferometry and Mopra CO line emission observations. But no optical data, as the galaxy is heavily obscured due to its location in Vela behind the Milky Way.


2020 ◽  
Vol 15 (S359) ◽  
pp. 108-116
Author(s):  
Bianca M. Poggianti ◽  
Callum Bellhouse ◽  
Tirna Deb ◽  
Andrea Franchetto ◽  
Jacopo Fritz ◽  
...  

AbstractGalaxies undergoing ram pressure stripping in clusters are an excellent opportunity to study the effects of environment on both the AGN and the star formation activity. We report here on the most recent results from the GASP survey. We discuss the AGN-ram pressure stripping connection and some evidence for AGN feedback in stripped galaxies. We then focus on the star formation activity, both in the disks and the tails of these galaxies, and conclude drawing a picture of the relation between multi-phase gas and star formation.


2020 ◽  
Vol 635 ◽  
pp. A47 ◽  
Author(s):  
R. Herrera-Camus ◽  
A. Janssen ◽  
E. Sturm ◽  
D. Lutz ◽  
S. Veilleux ◽  
...  

To understand the role that active galactic nuclei (AGN) feedback plays in galaxy evolution, we need in-depth studies of the multi-phase structure and energetics of galaxy-wide outflows. In this work, we present new, deep (∼50 h) NOEMA CO(1-0) line observations of the molecular gas in the powerful outflow driven by the AGN in the ultra-luminous infrared galaxy IRAS F08572+3915. We spatially resolve the outflow, finding that its most likely configuration is a wide-angle bicone aligned with the kinematic major axis of the rotation disk. The molecular gas in the wind reaches velocities up to approximately ±1200 km s−1 and transports nearly 20% of the molecular gas mass in the system. We detect a second outflow component located ∼6 kpc northwest from the galaxy moving away at ∼900 km s−1, which could be the result of a previous episode of AGN activity. The total mass and energetics of the outflow, which includes contributions from the ionized, neutral, and warm and cold molecular gas phases, is strongly dominated by the cold molecular gas. In fact, the molecular mass outflow rate is higher than the star formation rate, even if we only consider the gas in the outflow that is fast enough to escape the galaxy, which accounts for ∼40% of the total mass of the outflow. This results in an outflow depletion time for the molecular gas in the central ∼1.5 kpc region of only ∼3 Myr, a factor of ∼2 shorter than the depletion time by star formation activity.


2009 ◽  
Vol 5 (H15) ◽  
pp. 409-410
Author(s):  
Mark G. Wolfire

AbstractDiffuse gas in the Galaxy is observed to exist as cold (T ~ 100 K) neutral atomic gas (CNM) and warm neutral atomic (T ~ 8000 K) gas (WNM). In addition to these “thermal” phases, gas can also exist as warm (T ~ 8000 K) ionized gas, cold (T ~ 10 K) molecular gas and in warm (T ~ 100 - 500 K) interface regions or Photodissociation Regions (PDRs) on the surfaces of molecular clouds. The same chemical and thermal processes that dominate in the PDRs associated with molecular clouds are also at work in the diffuse neutral gas. Two additional “phases” are gas associated with GMCs that has H2 but no or little CO, and short lived or transient phases such as shocks, shears, and turbulence. I will first review the different gas phases in the Galaxy, their physical conditions and their dominant cooling lines. I will also discuss the observations and theoretical modeling in support of turbulence versus thermal instability as the driving force in producing the “thermal” gas phase distributions. Rough estimates for the distribution of phases in the Galaxy and the origin of the dominant emission lines has been conducted by previous telescopes (e.g., COBE, BICE) but with low velocity and low spectral resolution. The distribution and mass of the various gas phases is important for sorting out the role of SN in setting ISM pressures and in driving ISM turbulence. In addition, understanding the Galactic phase distribution is important in interpreting observations of extragalactic systems in which beams encompass several emission components. I will review the potential for future observations by e.g., STO, SOFIA, and Herschel to detect and separate phases in Galactic and extragalactic systems.


Author(s):  
Louise O.V. Edwards

This article begins with a general introduction to galaxy formation and evolution and ends with a discussion of the long-term spectroscopic study: The Role of Close Companions in the Formation of Brightest Cluster Galaxies and Intracluster Light. To illustrate the power, goals and aims of this larger project, preliminary data for one of the galaxy clusters in our sample is presented, Abell 407, which appears to be caught in the act of forming its Brightest Cluster Galaxy (BCG).


Sign in / Sign up

Export Citation Format

Share Document