scholarly journals Vertical and Horizontal Transmission of ESBL Plasmid from Escherichia coli O104:H4

Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1207
Author(s):  
Sandra Daniel ◽  
Kelly Goldlust ◽  
Valentin Quebre ◽  
Minjia Shen ◽  
Christian Lesterlin ◽  
...  

Multidrug resistance (MDR) often results from the acquisition of mobile genetic elements (MGEs) that encode MDR gene(s), such as conjugative plasmids. The spread of MDR plasmids is founded on their ability of horizontal transference, as well as their faithful inheritance in progeny cells. Here, we investigated the genetic factors involved in the prevalence of the IncI conjugative plasmid pESBL, which was isolated from the Escherichia coli O104:H4 outbreak strain in Germany in 2011. Using transposon-insertion sequencing, we identified the pESBL partitioning locus (par). Genetic, biochemical and microscopic approaches allowed pESBL to be characterized as a new member of the Type Ib partitioning system. Inactivation of par caused mis-segregation of pESBL followed by post-segregational killing (PSK), resulting in a great fitness disadvantage but apparent plasmid stability in the population of viable cells. We constructed a variety of pESBL derivatives with different combinations of mutations in par, conjugational transfer (oriT) and pnd toxin-antitoxin (TA) genes. Only the triple mutant exhibited plasmid-free cells in viable cell populations. Time-lapse tracking of plasmid dynamics in microfluidics indicated that inactivation of pnd improved the survival of plasmid-free cells and allowed oriT-dependent re-acquisition of the plasmid. Altogether, the three factors—active partitioning, toxin-antitoxin and conjugational transfer—are all involved in the prevalence of pESBL in the E. coli population.

2021 ◽  
Vol 12 ◽  
Author(s):  
Ping Cheng ◽  
Yuqi Yang ◽  
Sai Cao ◽  
Haibin Liu ◽  
Xiaoting Li ◽  
...  

The emergence of the plasmid-mediated colistin resistance gene mcr-1 is threatening the last-line role of colistin in human medicine. With mcr-1-positive Escherichia coli (E. coli) isolated from food animal being frequently reported in China, the prevalence of mcr-1 in food animal has attracted public attention. In the present study, a total of 105 colistin-resistant E. coli strains were isolated from 200 fecal samples collected from six swine farms in northeastern China. mcr-PCR revealed that the prevalence of mcr-1 in colistin-resistant E. coli was 53.33% (56/105). mcr-1-positive E. coli showed extensive antimicrobial resistance profiles with the presence of additional resistance genes, increased expression of multidrug efflux pump-associated genes, and increased biofilm formation ability. MLST differentiated all the mcr-1-positive E. coli into 25 sequence types (STs) and five unknown ST, and the most common ST was ST10 (n = 11). By phylogenetic group classification, the distribution of all mcr-1-positive E. coli belonging to groups A, B1, B2, and D was 46.43, 35.71, 5.36, and 5.36%, respectively. Conjugation experiment demonstrated that most of the mcr-1 were transferable at frequencies of 2.68 × 10–6–3.73 × 10–3 among 30 representative mcr-1-positive E. coli. The plasmid replicon types IncI2 (n = 9), IncX4 (n = 5), IncHI2 (n = 3), IncN (n = 3), and IncP (n = 1) were detected in the transconjugants. The results of growth assay, competition experiment, and plasmid stability testing showed that acquisition of mcr-1-harboring plasmids could reduce the fitness of bacterial hosts, but mcr-1 remained stable in the recipient strain. Due to the potential possibility of these mcr-1-positive E. coli being transmitted to humans through the food chain or through horizontal transmission, therefore, it is necessary to continuously monitor the prevalence and dissemination of mcr-1 in food animal, particularly in swine.


Zebrafish ◽  
2014 ◽  
Vol 11 (2) ◽  
pp. 85-97 ◽  
Author(s):  
Jonathan R. Mathias ◽  
Zhanying Zhang ◽  
Meera T. Saxena ◽  
Jeff S. Mumm

2014 ◽  
Vol 59 (2) ◽  
pp. 1337-1340 ◽  
Author(s):  
Wan-Jiang Zhang ◽  
Xiu-Mei Wang ◽  
Lei Dai ◽  
Xin Hua ◽  
Zhimin Dong ◽  
...  

ABSTRACTTwo porcineEscherichia coliisolates harbored thecfrgene on conjugative plasmids of 38,405 bp (pGXEC6) and 41,646 bp (pGXEC3). In these two plasmids, thecfrgene was located within a 4,612-bp region containing atnpA-IS26-cfr-IS26-Δhypelement. Plasmid pGXEC3 was almost identical to pGXEC6 except for a 3,235-bp ISEcp1-blaCTX-M-14binsertion. The colocation of the multiresistancecfrgene with an extended-spectrum-β-lactamase gene on a conjugative plasmid may support the dissemination of these genes by coselection.


2015 ◽  
Vol 12 (106) ◽  
pp. 20150069 ◽  
Author(s):  
Hiroki Takahashi ◽  
Taku Oshima ◽  
Jon L. Hobman ◽  
Neil Doherty ◽  
Selina R. Clayton ◽  
...  

Zinc is essential for life, but toxic in excess. Thus all cells must control their internal zinc concentration. We used a systems approach, alternating rounds of experiments and models, to further elucidate the zinc control systems in Escherichia coli . We measured the response to zinc of the main specific zinc import and export systems in the wild-type, and a series of deletion mutant strains. We interpreted these data with a detailed mathematical model and Bayesian model fitting routines. There are three key findings: first, that alternate, non-inducible importers and exporters are important. Second, that an internal zinc reservoir is essential for maintaining the internal zinc concentration. Third, our data fitting led us to propose that the cells mount a heterogeneous response to zinc: some respond effectively, while others die or stop growing. In a further round of experiments, we demonstrated lower viable cell counts in the mutant strain tested exposed to excess zinc, consistent with this hypothesis. A stochastic model simulation demonstrated considerable fluctuations in the cellular levels of the ZntA exporter protein, reinforcing this proposal. We hypothesize that maintaining population heterogeneity could be a bet-hedging response allowing a population of cells to survive in varied and fluctuating environments.


1998 ◽  
Vol 86 (4) ◽  
pp. 391-394 ◽  
Author(s):  
Chul Ho Kim ◽  
Jang Young Lee ◽  
Min Gon Kim ◽  
Ki Bang Song ◽  
Jeong Woo Seo ◽  
...  

1998 ◽  
Vol 180 (7) ◽  
pp. 1814-1821 ◽  
Author(s):  
Yong Yang ◽  
Ho-Ching Tiffany Tsui ◽  
Tsz-Kwong Man ◽  
Malcolm E. Winkler

ABSTRACT pdxK encodes a pyridoxine (PN)/pyridoxal (PL)/pyridoxamine (PM) kinase thought to function in the salvage pathway of pyridoxal 5′-phosphate (PLP) coenzyme biosynthesis. The observation that pdxK null mutants still contain PL kinase activity led to the hypothesis that Escherichia coli K-12 contains at least one other B6-vitamer kinase. Here we support this hypothesis by identifying the pdxY gene (formally, open reading frame f287b) at 36.92 min, which encodes a novel PL kinase. PdxY was first identified by its homology to PdxK in searches of the complete E. coli genome. Minimal clones of pdxY + overexpressed PL kinase specific activity about 10-fold. We inserted an omega cassette intopdxY and crossed the resultingpdxY::ΩKanr mutation into the bacterial chromosome of a pdxB mutant, in which de novo PLP biosynthesis is blocked. We then determined the growth characteristics and PL and PN kinase specific activities in extracts ofpdxK and pdxY single and double mutants. Significantly, the requirement of the pdxB pdxK pdxY triple mutant for PLP was not satisfied by PL and PN, and the triple mutant had negligible PL and PN kinase specific activities. Our combined results suggest that the PL kinase PdxY and the PN/PL/PM kinase PdxK are the only physiologically important B6vitamer kinases in E. coli and that their function is confined to the PLP salvage pathway. Last, we show thatpdxY is located downstream from pdxH (encoding PNP/PMP oxidase) and essential tyrS (encoding aminoacyl-tRNATyr synthetase) in a multifunctional operon.pdxY is completely cotranscribed with tyrS, but about 92% of tyrS transcripts terminate at a putative Rho-factor-dependent attenuator located in thetyrS-pdxY intercistronic region.


Sign in / Sign up

Export Citation Format

Share Document