scholarly journals At the X-Roads of Sex and Genetics in Pulmonary Arterial Hypertension

Genes ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1371
Author(s):  
Meghan M. Cirulis ◽  
Mark W. Dodson ◽  
Lynn M. Brown ◽  
Samuel M. Brown ◽  
Tim Lahm ◽  
...  

Group 1 pulmonary hypertension (pulmonary arterial hypertension; PAH) is a rare disease characterized by remodeling of the small pulmonary arteries leading to progressive elevation of pulmonary vascular resistance, ultimately leading to right ventricular failure and death. Deleterious mutations in the serine-threonine receptor bone morphogenetic protein receptor 2 (BMPR2; a central mediator of bone morphogenetic protein (BMP) signaling) and female sex are known risk factors for the development of PAH in humans. In this narrative review, we explore the complex interplay between the BMP and estrogen signaling pathways, and the potentially synergistic mechanisms by which these signaling cascades increase the risk of developing PAH. A comprehensive understanding of these tangled pathways may reveal therapeutic targets to prevent or slow the progression of PAH.

2007 ◽  
Vol 292 (4) ◽  
pp. L872-L878 ◽  
Author(s):  
M. Sean McMurtry ◽  
Rohit Moudgil ◽  
Kyoko Hashimoto ◽  
Sandra Bonnet ◽  
Evangelos D. Michelakis ◽  
...  

Pulmonary arterial hypertension (PAH) is associated with mutations of bone morphogenetic protein receptor 2 (BMPR2), and BMPR2 expression decreases with the development of experimental PAH. Decreased BMPR2 expression and impaired intracellular BMP signaling in pulmonary artery (PA) smooth muscle cells (PASMC) suppresses apoptosis and promotes proliferation, thereby contributing to the pathogenesis of PAH. We hypothesized that overexpression of BMPR2 in resistance PAs would ameliorate established monocrotaline PAH. Human BMPR2 was inserted into a serotype 5 adenovirus with a green fluorescent protein (GFP) reporter. Dose-dependent transgene expression was confirmed in PASMC using fluorescence microscopy, quantitative RT-PCR, and immunoblots. PAH was induced by injecting Sprague-Dawley rats with monocrotaline (60 mg/kg ip) or saline. On day 14, post-monocrotaline (MCT) rats received 5 × 109 plaque-forming units of either Ad-human BMPR2 (Ad-hBMPR2) or Ad-GFP. Transgene expression was confirmed by fluorescence microscopy, quantitative RT-PCR of whole lung samples, and laser-capture microdissected resistance PAs. Invasive hemodynamic and echocardiographic end points of pulmonary hypertension were assessed on day 24. Endogenous BMPR2 mRNA levels were greatest in resistance PAs, and expression declined with MCT PAH. Despite robust hBMPR2 expression in all lung lobes and within resistance PAs of treated rats, hBMPR2 did not lower mean PA pressure, pulmonary vascular resistance index, right ventricular hypertrophy, or remodeling of resistance PAs. Nebulized intratracheal adenoviral gene therapy with hBMPR2 reliably distributed hBMPR2 to resistance PAs but did not ameliorate PAH. Depressed BMPR2 expression may be a marker of PAH but is not central to the pathogenesis of this model of PAH.


Circulation ◽  
2016 ◽  
Vol 133 (18) ◽  
pp. 1747-1760 ◽  
Author(s):  
Cathelijne E. van der Bruggen ◽  
Chris M. Happé ◽  
Peter Dorfmüller ◽  
Pia Trip ◽  
Onno A. Spruijt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document