receptor like kinase
Recently Published Documents


TOTAL DOCUMENTS

683
(FIVE YEARS 163)

H-INDEX

71
(FIVE YEARS 8)

2022 ◽  
Vol 12 ◽  
Author(s):  
Ke Xu ◽  
Joris Jourquin ◽  
Maria Fransiska Njo ◽  
Long Nguyen ◽  
Tom Beeckman ◽  
...  

Leucine-rich repeat receptor-like kinases (LRR-RLKs) play fundamental roles in cell-to-cell and plant-environment communication. LRR-RLKs can function as receptors perceiving endogenous or external ligands, or as coreceptors, which stabilize the complex, and enhance transduction of the intracellular signal. The LRR-RLK BAK1 is a coreceptor for different developmental and immunity pathways. In this article, we identified PXY-CORRELATED 3 (PXC3) as a BAK1-interacting LRR-RLK, which was previously reported to be transcribed in vascular tissues co-expressed with PHLOEM INTERCALATED WITH XYLEM (PXY), the receptor of the TDIF/CLE41 peptide. Characterization of pxc3 loss-of-function mutants revealed reduced hypocotyl stele width and vascular cells compared to wild type, indicating that PXC3 plays a role in the vascular development in Arabidopsis. Furthermore, our data suggest that PXC3 might function as a positive regulator of the CLE41/TDIF–TDR/PXY signaling pathway.


2022 ◽  
pp. 153616
Author(s):  
Yin-Huan Xie ◽  
Fu-Jun Zhang ◽  
Ping Sun ◽  
Zhao-Yang Li ◽  
Peng-Fei Zheng ◽  
...  

2021 ◽  
Vol 22 (24) ◽  
pp. 13491
Author(s):  
Hideki Sugii ◽  
Mhd Safwan Albougha ◽  
Orie Adachi ◽  
Hiroka Tomita ◽  
Atsushi Tomokiyo ◽  
...  

Activin A, a member of transforming growth factor-β superfamily, is involved in the regulation of cellular differentiation and promotes tissue healing. Previously, we reported that expression of activin A was upregulated around the damaged periodontal tissue including periodontal ligament (PDL) tissue and alveolar bone, and activin A promoted PDL-related gene expression of human PDL cells (HPDLCs). However, little is known about the biological function of activin A in alveolar bone. Thus, this study analyzed activin A-induced biological functions in preosteoblasts (Saos2 cells). Activin A promoted osteoblastic differentiation of Saos2 cells. Activin receptor-like kinase (ALK) 1, an activin type I receptor, was more strongly expressed in Saos2 cells than in HPDLCs, and knockdown of ALK1 inhibited activin A-induced osteoblastic differentiation of Saos2 cells. Expression of ALK1 was upregulated in alveolar bone around damaged periodontal tissue when compared with a nondamaged site. Furthermore, activin A promoted phosphorylation of Smad1/5/9 during osteoblastic differentiation of Saos2 cells and knockdown of ALK1 inhibited activin A-induced phosphorylation of Smad1/5/9 in Saos2 cells. Collectively, these findings suggest that activin A promotes osteoblastic differentiation of preosteoblasts through the ALK1-Smad1/5/9 pathway and could be used as a therapeutic product for the healing of alveolar bone as well as PDL tissue.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Cheng ◽  
Hao-Long Li ◽  
Shao-Yan Xi ◽  
Xiao-Feng Zhang ◽  
Yun Zhu ◽  
...  

AbstractTumour lineage plasticity is an emerging hallmark of aggressive tumours. Tumour cells usually hijack developmental signalling pathways to gain cellular plasticity and evade therapeutic targeting. In the present study, the secreted protein growth and differentiation factor 1 (GDF1) is found to be closely associated with poor tumour differentiation. Overexpression of GDF1 suppresses cell proliferation but strongly enhances tumour dissemination and metastasis. Ectopic expression of GDF1 can induce the dedifferentiation of hepatocellular carcinoma (HCC) cells into their ancestral lineages and reactivate a broad panel of cancer testis antigens (CTAs), which further stimulate the immunogenicity of HCC cells to immune-based therapies. Mechanistic studies reveal that GDF1 functions through the Activin receptor-like kinase 7 (ALK7)-Mothers against decapentaplegic homolog 2/3 (SMAD2/3) signalling cascade and suppresses the epigenetic regulator Lysine specific demethylase 1 (LSD1) to boost CTA expression. GDF1-induced tumour lineage plasticity might be an Achilles heel for HCC immunotherapy. Inhibition of LSD1 based on GDF1 biomarker prescreening might widen the therapeutic window for immune checkpoint inhibitors in the clinic.


2021 ◽  
Author(s):  
Thi-Bich Luu ◽  
Anna Ourth ◽  
Cecile Pouzet ◽  
Nicolas Pauly ◽  
Julie Cullimore

Rhizobial lipochitooligosaccharidic Nod factors, specified by nod genes, are the primary determinants of host specificity in the legume-Rhizobia symbiosis. A Sinorhizobium meliloti nodF/nodL mutant produces Nod factors that differ from wild-type ones in lacking an O-acetate, and with a different acyl chain on the terminal non-reducing sugar. This mutant is defective in nodulation with various Medicago hosts. We examined the nodulation ability of M. truncatula cv Jemalong A17 and M. truncatula ssp. tricycla R108 with the nodF/nodL mutant. We then applied genetic and functional approaches to study the genetic basis and mechanism of nodulation of R108 by this mutant. We show that the nodF/nodL mutant can nodulate R108 but not A17. Using genomics and reverse genetics, we identified a newly-evolved gene in R108, LYK2bis, which is responsible for the phenotype. Transformation with LYK2bis allows A17 to gain nodulation with the nodF/nodL mutant. We found that LYK2bis is involved in specific NF signalling and interacts with the key receptor protein NFP. Our findings reveal that a newly-evolved gene in R108, LYK2bis, extends nodulation specificity to strains producing non-O-acetylated NFs. Interaction between LYK2bis and NFP provides a means of integrating the nodulation signalling pathways.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1122
Author(s):  
Tianci Wu ◽  
Feilong Guo ◽  
Gangbiao Xu ◽  
Jinfeng Yu ◽  
Li Zhang ◽  
...  

The fungus F. pseudograminearum can cause the destructive disease Fusarium crown rot (FCR) of wheat, an important staple crop. Functional roles of FCR resistance genes in wheat are largely unknown. In the current research, we characterized the antifungal activity and positive-regulatory function of the cysteine-rich repeat receptor-like kinase TaCRK-7A in the defense against F. pseudograminearum in wheat. Antifungal assays showed that the purified TaCRK-7A protein inhibited the growth of F. pseudograminearum. TaCRK-7A transcript abundance was elevated after F. pseudograminearum attack and was positively related to FCR-resistance levels of wheat cultivars. Intriguingly, knocking down of TaCRK-7A transcript increased susceptibility of wheat to FCR and decreased transcript levels of defense-marker genes in wheat. Furthermore, the transcript abundances of TaCRK-7A and its modulated-defense genes were responsive to exogenous jasmonate treatment. Taken together, these results suggest that TaCRK-7A can directly inhibit F. pseudograminearum growth and mediates FCR-resistance by promoting the expression of wheat defense genes in the jasmonate pathway. Thus, TaCRK-7A is a potential gene resource in FCR-resistant wheat breeding program.


2021 ◽  
Author(s):  
Hiroaki Kato ◽  
Keiichiro Nemoto ◽  
Motoki Shimizu ◽  
Akira Abe ◽  
Shuta Asai ◽  
...  

In plants, many invading microbial pathogens are recognized by cell-surface pattern recognition receptors (PRRs), inducing defense responses; yet how PRRs perceive pathogen sphingolipids remains unclear. Here, we show that the ceramide Pi-Cer D from a plant pathogenic oomycete Phytophthora infestans triggers defense responses in Arabidopsis. Pi-Cer D is cleaved by an Arabidopsis apoplastic ceramidase, NCER2, and the resulting 9-methyl-branched sphingoid base is recognized by a plasma membrane lectin receptor-like kinase, RDA2. Importantly, 9-methyl-branched sphingoid base, which is unique to microbes, induces plant immune responses by interacting with RDA2. Loss of RDA2 or NCER2 function compromised Arabidopsis resistance against an oomycete pathogen, indicating that these are crucial for defense. We provide new insights that help elucidate the recognition mechanisms of pathogen-derived lipid molecules in plants.


2021 ◽  
Author(s):  
Gabriele B Monshausen ◽  
Cassidy S Cornblatt ◽  
Han-Wei Shih

FERONIA (FER), a receptor-like kinase involved in plant immunity, cell expansion, and mechanical signal transduction, is known to be endocytosed and degraded in response to treatment with its peptide ligand RAPID ALKALINIZATION FACTOR 1 (RALF1). Using confocal fluorescence microscopy and biochemical assays, we have found that full length FER-eGFP abundance at the plasma membrane is also regulated by mechanical stimulation, but through a separate, cysteine protease-dependent pathway. Like RALF1 treatment, both mechanical bending and mechanical wounding trigger a reduction in plasma membrane-localized, native promoter-driven FER-eGFP in Arabidopsis roots, hypocotyls, and cotyledons. However, pharmacological inhibition of protein trafficking and degradation suggests that while RALF1 induces clathrin-mediated endocytosis and subsequent degradation of FER-eGFP, mechanical stimulation triggers cleavage and/or degradation of FER-eGFP in a cysteine protease-dependent, clathrin-independent manner. Despite the stimulus-dependent differences in these two pathways, we found that both require early FER signaling components, including Ca2+ signaling, FER kinase activity, and the presence of LLG1, a FER-interacting protein with an essential role in FER-dependent signal transduction.


Sign in / Sign up

Export Citation Format

Share Document