signaling cascades
Recently Published Documents


TOTAL DOCUMENTS

1298
(FIVE YEARS 415)

H-INDEX

85
(FIVE YEARS 10)

2022 ◽  
Vol 12 ◽  
Author(s):  
Adrián Ramírez-de-Arellano ◽  
Ana Laura Pereira-Suárez ◽  
Cecilia Rico-Fuentes ◽  
Edgar Iván López-Pulido ◽  
Julio César Villegas-Pineda ◽  
...  

Estrogens are hormones that have been extensively presented in many types of cancer such as breast, uterus, colorectal, prostate, and others, due to dynamically integrated signaling cascades that coordinate cellular growth, differentiation, and death which can be potentially new therapeutic targets. Despite the historical use of estrogens in the pathogenesis of prostate cancer (PCa), their biological effect is not well known, nor their role in carcinogenesis or the mechanisms used to carry their therapeutic effects of neoplastic in prostate transformation. The expression and regulation of the estrogen receptors (ERs) ERα, ERβ, and GPER stimulated by agonists and antagonists, and related to prostate cancer cells are herein reviewed. Subsequently, the structures of the ERs and their splice variants, the binding of ligands to ERs, and the effect on PCa are provided. Finally, we also assessed the contribution of molecular simulation which can help us to search and predict potential estrogenic activities.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 225
Author(s):  
Ertan Küçüksayan ◽  
Anna Sansone ◽  
Chryssostomos Chatgilialoglu ◽  
Tomris Ozben ◽  
Demet Tekeli ◽  
...  

The importance of sapienic acid (6c-16:1), a monounsaturated fatty acid of the n-10 family formed from palmitic acid by delta-6 desaturase, and of its metabolism to 8c-18:1 and sebaleic acid (5c,8c-18:2) has been recently assessed in cancer. Data are lacking on the association between signaling cascades and exposure to sapienic acid comparing cell lines of the same cancer type. We used 50 μM sapienic acid supplementation, a non-toxic concentration, to cultivate MCF-7 and 2 triple-negative breast cancer cells (TNBC), MDA-MB-231 and BT-20. We followed up for three hours regarding membrane fatty acid remodeling by fatty acid-based membrane lipidome analysis and expression/phosphorylation of EGFR (epithelial growth factor receptor), mTOR (mammalian target of rapamycin) and AKT (protein kinase B) by Western blotting as an oncogenic signaling cascade. Results evidenced consistent differences among the three cell lines in the metabolism of n-10 fatty acids and signaling. Here, a new scenario is proposed for the role of sapienic acid: one based on changes in membrane composition and properties, and the other based on changes in expression/activation of growth factors and signaling cascades. This knowledge can indicate additional players and synergies in breast cancer cell metabolism, inspiring translational applications of tailored membrane lipid strategies to assist pharmacological interventions.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 214
Author(s):  
Eirini Lionaki ◽  
Christina Ploumi ◽  
Nektarios Tavernarakis

One-carbon metabolism (OCM) is a network of biochemical reactions delivering one-carbon units to various biosynthetic pathways. The folate cycle and methionine cycle are the two key modules of this network that regulate purine and thymidine synthesis, amino acid homeostasis, and epigenetic mechanisms. Intersection with the transsulfuration pathway supports glutathione production and regulation of the cellular redox state. Dietary intake of micronutrients, such as folates and amino acids, directly contributes to OCM, thereby adapting the cellular metabolic state to environmental inputs. The contribution of OCM to cellular proliferation during development and in adult proliferative tissues is well established. Nevertheless, accumulating evidence reveals the pivotal role of OCM in cellular homeostasis of non-proliferative tissues and in coordination of signaling cascades that regulate energy homeostasis and longevity. In this review, we summarize the current knowledge on OCM and related pathways and discuss how this metabolic network may impact longevity and neurodegeneration across species.


Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 105
Author(s):  
Jacopo Meldolesi

Upon its discovery, Alzheimer’s, the neurodegenerative disease that affects many millions of patients in the world, remained without an effective therapy. The first drugs, made available near the end of last century, induced some effects, which remained only marginal. More promising effects are now present, induced by two approaches. Blockers of the enzyme BACE-1 induce, in neurons and glial cells, decreased levels of Aβ, the key peptide of the Alzheimer’s disease. If administered at early AD steps, the BACE-1 blockers preclude further development of the disease. However, they have no effect on established, irreversible lesions. The extracellular vesicles secreted by mesenchymal stem cells induce therapy effects analogous, but more convenient, than the effects of their original cells. After their specific fusion to target cells, the action of these vesicles depends on their ensuing release of cargo molecules, such as proteins and many miRNAs, active primarily on the cell cytoplasm. Operationally, these vesicles exhibit numerous advantages: they exclude, by their accurate selection, the heterogeneity of the original cells; exhibit molecular specificity due to their engineering and drug accumulation; and induce effective actions, mediated by variable concentrations of factors and molecules and by activation of signaling cascades. Their strength is reinforced by their combination with various factors and processes. The recent molecular and operations changes, induced especially by the stem cell target cells, result in encouraging and important improvement of the disease. Their further development is expected in the near future.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 324
Author(s):  
Igor Y. Iskusnykh ◽  
Anastasia A. Zakharova ◽  
Dhruba Pathak

Glutathione is a remarkably functional molecule with diverse features, which include being an antioxidant, a regulator of DNA synthesis and repair, a protector of thiol groups in proteins, a stabilizer of cell membranes, and a detoxifier of xenobiotics. Glutathione exists in two states—oxidized and reduced. Under normal physiological conditions of cellular homeostasis, glutathione remains primarily in its reduced form. However, many metabolic pathways involve oxidization of glutathione, resulting in an imbalance in cellular homeostasis. Impairment of glutathione function in the brain is linked to loss of neurons during the aging process or as the result of neurological diseases such as Huntington’s disease, Parkinson’s disease, stroke, and Alzheimer’s disease. The exact mechanisms through which glutathione regulates brain metabolism are not well understood. In this review, we will highlight the common signaling cascades that regulate glutathione in neurons and glia, its functions as a neuronal regulator in homeostasis and metabolism, and finally a mechanistic recapitulation of glutathione signaling. Together, these will put glutathione’s role in normal aging and neurological disorders development into perspective.


2022 ◽  
Author(s):  
Lizbeth de la Cruz ◽  
Raul Riquelme ◽  
Oscar Vivas ◽  
Andres Barria ◽  
Jill B. Jensen

Phosphatidylinositol(4,5)-bisphosphate (PtdInsP2) is an important modulator of many cellular processes and its abundance in the plasma membrane is closely regulated. We examined the hypothesis that the scaffolding protein Dishevelled can bind the lipid kinases PI4K and PIP5K, facilitating synthesis of PtdInsP2 directly from PtdIns. This report used several assays for PtdInsP2 to examine the cooperative function of phosphoinositide kinases and Dishevelled in the context of two receptor signaling cascades. Simultaneous overexpression of PI4KIIIα and PIP5KIγ had a synergistic effect on PtdInsP2 synthesis that was recapitulated by overexpression of Dishevelled. Increasing the activity of Dishevelled by overexpression increased resting plasma membrane PtdInsP2. Knockdown of Dishevelled reduced resting plasma membrane PtdInsP2 and slowed PtdInsP2 resynthesis following receptor activation. We confirm that Dishevelled promotes coupling of PI4KIIIα and PIP5KIγ and show that this interaction is essential for efficient resynthesis of PtdInsP2 following receptor activation.


Cancers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 238
Author(s):  
Nadezhda V. Popova ◽  
Manfred Jücker

The extracellular matrix (ECM) is highly dynamic as it is constantly deposited, remodeled and degraded to maintain tissue homeostasis. ECM is a major structural component of the tumor microenvironment, and cancer development and progression require its extensive reorganization. Cancerized ECM is biochemically different in its composition and is stiffer compared to normal ECM. The abnormal ECM affects cancer progression by directly promoting cell proliferation, survival, migration and differentiation. The restructured extracellular matrix and its degradation fragments (matrikines) also modulate the signaling cascades mediated by the interaction with cell-surface receptors, deregulate the stromal cell behavior and lead to emergence of an oncogenic microenvironment. Here, we summarize the current state of understanding how the composition and structure of ECM changes during cancer progression. We also describe the functional role of key proteins, especially tenascin C and fibronectin, and signaling molecules involved in the formation of the tumor microenvironment, as well as the signaling pathways that they activate in cancer cells.


2022 ◽  
Author(s):  
Weihua Li ◽  
Jennifer Trigg ◽  
Paul H Taghert

G protein-coupled receptors (GPCRs) trigger second messenger signaling cascades following activation by cognate ligands. GPCR signaling ceases following receptor desensitization or uncoupling from G proteins. Each day and in conjunction with ambient daylight conditions, neuropeptide PDF regulates the phase and amplitude of locomotor activity rhythms in Drosophila through its receptor, a Family B GPCR. Its time of action – when it starts signaling and when it stops – must change every day to following changing day lengths. We studied the process by which PDF Receptor (PDFR) signaling turns off in vivo, by modifying as many as half of the 28 potential sites of phosphorylation in its C terminal tail. We report that many such sites are conserved evolutionarily, and that in general their conversion to a non-phosphorylatable residue (alanine) creates a specific behavioral syndrome opposite to loss of function phenotypes previously described for pdfr. Such “gain of function” pdfr phenotypes include increases in the amplitudes of both Morning and Evening behavioral peaks as well as multi-hour delays of their phases. Such effects were most clearly associated with a few specific serine residues, and were seen following alanine-conversion of as few as one or two residues. The behavioral phenotypes produced by these PDFR sequence variants are not a consequence of changes to the pharmacological properties or of changes in their surface expression, as measured in vitro. We conclude that the mechanisms underlying termination of PDFR signaling are complex and central to an understanding of how this critical neuropeptide modulates daily rhythmic behavior.


2022 ◽  
Author(s):  
Daniel Bronson ◽  
Radha Kalluri

Vestibular efferent neurons play an important role in shaping vestibular afferent excitability and accordingly, on the information encoded by their spike patterns. Efferent-modulation is linked to muscarinic signaling cascades that affect ion channel conductances, most notably low-voltage gated potassium channels such as KCNQ. Here we tested and found that muscarinic signaling cascades also modulate hyperpolarization-activated cyclic-nucleotide gated channels (HCN). HCN channels play a key role in controlling spike-timing regularity and a non-chemical form of transmission between type I hair cells and vestibular afferents. The impact of cholinergic efferent input on HCN channels was assessed using voltage-clamp methods, which measure currents in the disassociated cell bodies of vestibular ganglion neurons (VGN). Membrane properties in VGN were characterized before and after administration of the muscarinic acetylcholine receptor (mAChR) agonist Oxotremorine-M (Oxo-M). We found that Oxo-M shifted the voltage-activation range of HCN channels in the positive direction by 4.1 +/- 1.1 mV, which more than doubled the available current when held near rest at -60 mV (a 184 +/- 90.1% increase, n=19). This effect was not blocked by pre-treating the cells with a KCNQ channel blocker, linopirdine, which suggests that this effect is not dependent on KCNQ currents. We also found that HCN channel properties in the baseline condition and sensitivity to mAChR activation depended on cell size and firing patterns. Large-bodied neurons with onset firing patterns had the most depolarized activation range and least sensitivity to mAChR activation. Together, our results highlight the complex and dynamic regulation of HCN channels in VGN.


Sign in / Sign up

Export Citation Format

Share Document