scholarly journals Marine Monitoring for Offshore Geological Carbon Storage—A Review of Strategies, Technologies and Trends

Geosciences ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 383
Author(s):  
Ann E. A. Blomberg ◽  
Ivar-Kristian Waarum ◽  
Christian Totland ◽  
Espen Eek

Carbon capture and storage (CCS) could significantly contribute to reducing greenhouse gas emissions and reaching international climate goals. In this process, CO2 is captured and injected into geological formations for permanent storage. The injected plume and its migration within the reservoir is carefully monitored, using geophysical methods. While it is considered unlikely that the injected CO2 should escape the reservoir and reach the marine environment, marine monitoring is required to verify that there are no indications of leakage, and to detect and quantify leakage if it should occur. Marine monitoring is challenging because of the considerable area to be covered, the limited spatial and temporal extent of a potential leakage event, and the considerable natural variability in the marine environment. In this review, we summarize marine monitoring strategies developed to ensure adequate monitoring of the marine environment without introducing prohibitive costs. We also provide an overview of the many different technologies applicable to different aspects of marine monitoring of geologically stored carbon. Finally, we identify remaining knowledge gaps and indicate expected directions for future research.

2021 ◽  
Vol 108 ◽  
pp. 103309
Author(s):  
Tatiane Tobias da Cruz ◽  
José A. Perrella Balestieri ◽  
João M. de Toledo Silva ◽  
Mateus R.N. Vilanova ◽  
Otávio J. Oliveira ◽  
...  

Author(s):  
J Blackford ◽  
N Jones ◽  
R Proctor ◽  
J Holt ◽  
S Widdicombe ◽  
...  

If carbon capture and storage is to be adopted as a CO2 mitigation strategy, it is important to understand the associated risks. The risk analysis consists of several elements such as leakage probability, assessing the strength of environmental perturbation, and quantifying the ecological, economic, and social impacts. Here, the environmental perturbation aspect is addressed by using a marine system model of the North West European Shelf seas to simulate the consequences of CO2 additions such as those that could arise from a failure of geological sequestration schemes. Little information exists to guide the choice of leak scenario and many assumptions are required; for consistency the assumptions err towards greater impact and what would be in likelihood extreme scenarios. The simulations indicate that only the largest leakage scenarios tested are capable of producing perturbations that are likely to have environmental consequences beyond the locality of a leak event. It is shown that, given the available evidence, the chemical perturbation of a sequestration leak, regionally integrated, is likely to be insignificant when compared with that from continued non-mitigated atmospheric CO2 emissions and the subsequent acidification of the marine system. The potential ecological impacts of a large environmental CO2 perturbation are reviewed, indicating that the biogeochemical functioning and biodiversity are sensitive. The key unknowns that must be addressed in future research are identified; namely, the fine scale dispersion of CO2 and the ability of ecological systems to recover from perturbation.


2012 ◽  
Vol 23 (2-3) ◽  
pp. 299-317 ◽  
Author(s):  
Malti Goel

The technology for CO2 sequestration is developing fast and a lot of activity to launch pilot and demonstration projects in Carbon Capture and Storage (CCS) is taking place internationally. The technologies are large-scale and their sustainability is dependent on cost, reliability and acceptability. Geo-modeling has an important role to play in assessing the potential and feasibility. This paper describes recent developments in CCS technology, examines the various options for CO2 fixation and the possible role of geo-modeling studies. We present issues and challenges in modeling and monitoring studies in CO2 fixation and provide glimpses of current research in India. Future research needs are discussed.


2020 ◽  
Author(s):  
Mohammad Rashad Amir Rashidi ◽  
Edgar Peter Dabbi ◽  
Zainol Affendi Abu Bakar ◽  
M Shahir Misnan ◽  
Claus Pedersen ◽  
...  

2016 ◽  
Vol 192 ◽  
pp. 9-25 ◽  
Author(s):  
Berend Smit

Carbon Capture and Storage (CCS) is the only available technology that allows us to significantly reduce our CO2 emissions while keeping up with the ever-increasing global energy demand. Research in CCS focuses on reducing the costs of carbon capture and increasing our knowledge of geological storage to ensure the safe and permanent storage of CO2. This brief review will discuss progress in different capture and storage technologies.


Sign in / Sign up

Export Citation Format

Share Document