scholarly journals Small Scale Rainfall Partitioning in a European Beech Forest Ecosystem Reveals Heterogeneity of Leaf Area Index and Its Connectivity to Hydro-and Atmosphere

Geosciences ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 393 ◽  
Author(s):  
Nico Frischbier ◽  
Katharina Tiebel ◽  
Alexander Tischer ◽  
Sven Wagner

(1) Background: Leaf area index (LAI) is an essential structural property of plant canopies and is functionally related to fluxes of energy, water, carbon, and light in ecosystems; coupling the biosphere to the geo-, hydro-, and atmosphere. There is an increasing need for more accurate and traceable measurements among several spatial scales of investigation and modelling. We hypothesize that the spatial variability of LAI at the scale of crown sections of a single European beech (Fagus sylvatica L.) tree in a highly structured, mixed European beech-Norway spruce stand can be determined by simultaneous records of precipitation; (2) Methods: Spatially explicit measurements of throughfall were conducted repeatedly below beech and in forest gaps for rain events in leafed and in leafless periods. Subsequent analysis with a new regression approach resulted in estimating leaf and twig water storage capacities (SCleaf/twig) at point level independent of within-crown lateral flow mechanisms. Inverse modelling was used to estimate spatial litterfall (n = 99) distribution and litter production (mass, area, numbers) for single trees, as a function of diameter at breast height; (3) Results: As revealed by a linear mixed-effects model, SCleaf at the center of a beech canopies amounts to 4.9 mm in average and significantly decreases in the direction of the crown edges to an average value of 1.1 mm. Based on diameter-sensitive prediction of litter production, specific leaf area wetting capacity amounts to 0.260 l·m−2. A linear within-canopy dynamic of LAI was found with a mean of 17.6 m2·m−2 in the center and 4.0 m2·m−2 at the edges; and (4) Conclusions: The application of the method provided plausible results and can be extended to further throughfall datasets and tree species. Unravelling the causes and magnitude of spatial- and temporal heterogeneity of forest ecosystem properties contribute to overall progress in geosciences by improving the understanding how the biosphere relates to the hydro- and atmosphere.

2021 ◽  
Vol 128 ◽  
pp. 107841
Author(s):  
Jan-Peter George ◽  
Wei Yang ◽  
Hideki Kobayashi ◽  
Tobias Biermann ◽  
Arnaud Carrara ◽  
...  

2020 ◽  
Vol 36 (4) ◽  
pp. 557-564
Author(s):  
LingHan Cai ◽  
Yuan Zhao ◽  
Zhuojue Huang ◽  
Yang Gao ◽  
Han Li ◽  
...  

Highlights This article calculates the canopy coverage (Cc) and inverts it to the leaf area index (LAI) of the collected images through a portable device such as a mobile phone, which is convenient for researchers. The Lab color model has been used for plant area extraction, which has achieved good results. Steps such as weed removal make the algorithm more universal. The inversion results of LAI based on canopy coverage has high accuracy, which indicates that it can be used for LAI calculation. Abstract . Canopy coverage (Cc) and leaf area index (LAI) are important parameters for qualitative and quantitative descriptions of plant growth trends. Meanwhile, LAI can be reflected by Cc. Therefore, it is of great significance to observe Cc and establish the relationship between Cc and LAI for monitoring the growth of plants. In July 2019, in Shang Zhuang experimental field of China Agricultural University, 30 potato canopy images were taken vertically by camera, and the actual LAI data of the corresponding images were measured and recorded by LAI-2200C. Image extraction algorithms of different models, such as ExG, ExGR, NDIGR, and Lab color space extraction model are evaluated and compared. After that, estimating the parameters of the logarithmic model of LAI-Cc by minimizing errors, evaluating the inversion model by Hold-Out. Besides, the result shows Cc can be calculated efficiently by using Lab color space extraction model. In the training set, the average value of R2 between the predicted LAI and the actual LAI reaches 0.940, and the RMSE reaches 0.144. In the test set, the average value of R2 reaches 0.937, the RMSE reaches 0.197. And the average time consumption of the entire process is 2.989 s on an image. It suggests that the study can provide a basis for dynamic monitoring of potato and other crops. Keywords: Canopy coverage (Cc), Leaf area index (LAI), Image processing, Potato, Rapid measurement.


2020 ◽  
Vol 36 (4) ◽  
pp. 557-564
Author(s):  
LingHan Cai ◽  
Yuan Zhao ◽  
Zhuojue Huang ◽  
Yang Gao ◽  
Han Li ◽  
...  

Highlights This article calculates the canopy coverage (Cc) and inverts it to the leaf area index (LAI) of the collected images through a portable device such as a mobile phone, which is convenient for researchers. The Lab color model has been used for plant area extraction, which has achieved good results. Steps such as weed removal make the algorithm more universal. The inversion results of LAI based on canopy coverage has high accuracy, which indicates that it can be used for LAI calculation. Abstract . Canopy coverage (Cc) and leaf area index (LAI) are important parameters for qualitative and quantitative descriptions of plant growth trends. Meanwhile, LAI can be reflected by Cc. Therefore, it is of great significance to observe Cc and establish the relationship between Cc and LAI for monitoring the growth of plants. In July 2019, in Shang Zhuang experimental field of China Agricultural University, 30 potato canopy images were taken vertically by camera, and the actual LAI data of the corresponding images were measured and recorded by LAI-2200C. Image extraction algorithms of different models, such as ExG, ExGR, NDIGR, and Lab color space extraction model are evaluated and compared. After that, estimating the parameters of the logarithmic model of LAI-Cc by minimizing errors, evaluating the inversion model by Hold-Out. Besides, the result shows Cc can be calculated efficiently by using Lab color space extraction model. In the training set, the average value of R2 between the predicted LAI and the actual LAI reaches 0.940, and the RMSE reaches 0.144. In the test set, the average value of R2 reaches 0.937, the RMSE reaches 0.197. And the average time consumption of the entire process is 2.989 s on an image. It suggests that the study can provide a basis for dynamic monitoring of potato and other crops. Keywords: Canopy coverage (Cc), Leaf area index (LAI), Image processing, Potato, Rapid measurement.


Author(s):  
Indu Indirabai ◽  
M. V. Harindranathan Nair ◽  
Jaishanker R. Nair ◽  
Rama Rao Nidamanuri

The Western Ghats regions of India are characterised by highly complex and biodiverse forest ecosystem with heterogeneous tree species. The integration of LiDAR data with multispectral remote sensing has limitations in the case of spectral information abundance. The objective of this study was to undertake biophysical characterisation in the Western Ghats regions of India by the integration of GLAS ICESat data and AVIRIS-NG hyperspectral data. The methodology of the study includes pre-processing of the hyperspectral and ICESat GLAS data followed by the integration of the two data sets based on pixel based fusion strategy in order to estimate the biophysical parameters of forests. Biomass was estimated by Support Vector Regression method. The structural characteristics extracted from the LiDAR data are integrated with spectral characteristics from the AVIRIS NG imagery based on the pixel level so that biophysical characteristics including canopy height, biomass, Leaf Area Index are estimated. The integrated product on further analysis revealed the applicability of this approach to extract more spectral information and forest parameters. The key findings of the study include biophysical parameters both structural as well as abundant spectral information can be retrieved successfully by the methodology used which have strong correlation with the in situ measurements. The study concluded that biophysical parameters including Leaf Area Index, biomass and canopy height can be effectively estimated by the integration of AVIRIS-NG imagery and GLAS data, which cannot be possible when used independently. It is recommended to have continuous retrieval of LiDAR foot prints instead of discrete, to make modelling of the biophysical parameters a little more effective.


Dendrobiology ◽  
2020 ◽  
Vol 83 ◽  
pp. 75-84 ◽  
Author(s):  
Ion Catalin Petritan ◽  
Victor-Vasile Mihăilă ◽  
Cosmin Ion Bragă ◽  
Marlène Boura ◽  
Diana Vasile ◽  
...  

2020 ◽  
Author(s):  
Jan-Peter George ◽  
Jan Pisek ◽  

<p>Leaf area index (i.e. one-half the total green leaf area per unit of horizontal ground surface area) is a crucial parameter in carbon balancing and modeling. Forest overstory and understory layers differ in carbon and water cycle regimes and phenology, as well as in ecosystem functions. Separate retrievals of leaf area index (LAI) for these two layers would help to improve modeling forest biogeochemical cycles, evaluating forest ecosystem functions and also remote sensing of forest canopies by inversion of canopy reflectance models. The aim of this study is to compare currently available understory LAI assessment methodologies over a diverse set of greenhouse gas measurement sites distributed along a wide latitudinal and elevational gradient across Europe. This will help to quantify  the fraction of the canopy LAI which is represented by understory, since this is still the major source of uncertainty in global LAI products derived from remote sensing data. For this, we took ground photos as well as in-situ reflectance measurements of the understory vegetation at 30 ICOS (Integration Carbon Observation System) sites distributed across 10 countries in Europe. The data were analyzed by means of three conceptually different methods for LAI estimation and comprised purely empirical (fractional cover), semi-empirical (in-situ NDVI linked to the radiative transfer model FLiES), and purely deterministic (Four-scale geometrical optical model) approaches. Finally, our results are compared with global forest understory LAI maps derived from remote sensing data at 1 km resolution (Liu et al. 2017). While we found some agreement among the three methods (e.g. Pearson-correlation between empirical and semi-empirical = 0.63), we also identified sources that are particularly prone to error inclusion such as inaccurate assessment of fractional cover from ground photos. Relationships between understory LAI and long-term climate variables were weak and suggested that understory LAI at the ICOS sites is probably more strongly determined by microclimatic conditions.</p><p><strong>Liu Y. et al. (2017):</strong> Separating overstory and understory leaf area indices for global needleleaf and deciduous broadleaf forests by fusion of MODIS and MISR data. Biogeosciences 14: 1093-1110.</p>


2014 ◽  
Vol 143 ◽  
pp. 131-141 ◽  
Author(s):  
Hao Tang ◽  
Matthew Brolly ◽  
Feng Zhao ◽  
Alan H. Strahler ◽  
Crystal L. Schaaf ◽  
...  

2014 ◽  
Vol 12 (3) ◽  
pp. 599-608
Author(s):  
Jihua Wang ◽  
Yingying Dong ◽  
Haikuan Feng ◽  
Guijun Yang ◽  
Xingang Xu

Sign in / Sign up

Export Citation Format

Share Document