scholarly journals Effect of stand density, canopy leaf area index and growth variables on Dendrocalamus brandisii (Munro) Kurz litter production at Simao District of Yunnan Province, southwestern China

2020 ◽  
Vol 23 ◽  
pp. e01051
Author(s):  
Tinsae Bahru ◽  
Yulong Ding
2002 ◽  
Vol 78 (1) ◽  
pp. 137-145 ◽  
Author(s):  
Victor J Lieffers ◽  
Bradley D Pinno ◽  
Kenneth J Stadt

This study examines light competition between aspen and spruce during the sequence of aspen development. Leaf area index and light transmission were measured or estimated for aspen stands from 2 to 125 years old. Light transmission was lowest at 15-25 years, and in some stands, transmission was less than 5% of above-canopy light. Hypothetical aspen stands with various stem configurations and heights were developed, and positions were identified that would meet or fail Alberta free-to-grow (FTG) standards. Light transmission was estimated at each position with the MIXLIGHT forest light simulator. Positions in canopy gaps or at the northern sides of canopy gaps had higher light. In general, however, there was little difference in available light between positions that met or failed FTG criteria. Stand density and size of aspen trees appears to be a better index to predict light transmission and spruce success in juvenile aspen stands than current FTG criteria. Key words: competition, free to grow, hardwood, spruce, light


1996 ◽  
Vol 21 (1) ◽  
pp. 241-241
Author(s):  
Gene Burris ◽  
Don Cook ◽  
B. R. Leonard ◽  
J. B. Graves ◽  
J. Pankey

Abstract The test was conducted at the Northeast Research Station in St. Joseph, LA. Plots were replicated 4 times in a RCB design and were four rows (40-inch spacing) X 65 ft. ‘Stoneville LA 887’ cotton seed was planted 2 and 3 May on a commerce silt soil which was fertilized sidedress with 90 lb N/acre. Cotton seed were planted with a John Deere model 7100 series planter which was equipped with 10 inch seed cones mounted to replace the seed hoppers. The seed rate was 4 seed/row ft. Granular in-furrow treatments were applied with 8 inch belt cone applicators mounted to replace the standard granular applicators. Control of thrips and aphids was evaluated on 5 randomly selected plants/plot. Evaluations were made on 18, 19, 24, 26, and 29 May and 8 Jun. Plant height counts were taken on 10 randomly selected plants/plot on 8 Jun. Stand density and leaf area was determined by counting the number of plants in a randomly selected meter on 29 May. Leaf area was recorded using a Li Cor leaf area machine. The data was recorded as cm2 and converted to a leaf area index (LAI). Major pests and/or secondary pest control was initiated in Jun and continued on an “as needed” basis through Aug.


1991 ◽  
Vol 21 (3) ◽  
pp. 300-305 ◽  
Author(s):  
N. J. Smith

Salal (Gaultheriashallon Pursh) leaf biomass, leaf area index, specific leaf area, and leaf morphology were examined in 13 Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) stands from 37 destructively measured 1-m2 quadrats. In response to light and stand overstory density, salal shoots produced either mainly sun leaves or mainly shade leaves. Sun leaves were associated with sunflecks in open-grown or variably stocked stands. Shade leaves were associated with diffuse light under denser stands. Sun-leaf quadrats had mean specific leaf areas less than 90 cm2/g; shade-leaf quadrats had mean specific leaf areas greater than 90 cm2/g. Sun leaves were narrower, with average leaf widths less than 5 cm. Quadrat salal leaf biomass and leaf area index peaked at Curtis' metric relative density 5.9, which corresponded to an availability of 15% of global photosynthetically active radiation. Sun-leaf quadrats occurred below relative density 5; shade-leaf quadrats occurred above relative density 4. A mixture of sun- and shade-leaf quadrats occurred between about relative density 4 and 5, depending on the uniformity of stocking.


2007 ◽  
Vol 37 (2) ◽  
pp. 343-355 ◽  
Author(s):  
Nate G. McDowell ◽  
Henry D. Adams ◽  
John D. Bailey ◽  
Thomas E. Kolb

We examined the response of growth efficiency (GE), leaf area index (LAI), and resin flow (RF) to stand density manipulations in ponderosa pine ( Pinus ponderosa Dougl. ex Laws.) forests of northern Arizona, USA. The study used a 40 year stand density experiment including seven replicated basal area (BA) treatments ranging from 7 to 45 m2·ha–1. Results were extended to the larger region using published and unpublished datasets on ponderosa pine RF. GE was quantified using basal area increment (BAI), stemwood production (NPPs), or volume increment (VI) per leaf area (Al) or sapwood area (As). GE per Al was positively correlated with BA, regardless of numerator (BAI/Al, NPPs/Al, and VI/Al; r2 = 0.84, 0.95, and 0.96, respectively). GE per As exhibited variable responses to BA. Understory LAI increased with decreasing BA; however, total (understory plus overstory) LAI was not correlated with BA, GE, or RF. Opposite of the original research on this subject, resin flow was negatively related to GE per Al because Al/As ratios decline with increasing BA. BAI, and to a lesser degree BA, predicted RF better than growth efficiency, suggesting that the simplest measurement with the fewest assumptions (BAI) is also the best approach for predicting RF.


1989 ◽  
Vol 19 (9) ◽  
pp. 1131-1136 ◽  
Author(s):  
William R. Bidlake ◽  
R. Alan Black

Total leaf-area index and the vertical distribution of leaf-area index were described for an unthinned stand (density 11 250 stems/ha) and a thinned stand (density 1660 stems/ha) of 30-year-old Larixoccidentalis Nutt. Two independent methods were used to estimate leaf-area index in each of the two stands. The first method is based on allometric relationships that are applied to stem measurements, and the second method is based on gap-fraction analysis of fisheye photographs. Leaf-area index estimates obtained by the two methods were not significantly different. The gap-fraction method provides a desirable alternative because much less fieldwork is required, however, use of this method is limited to canopies where the light-blocking elements are randomly displayed. Total leaf-area index values for the unthinned and thinned stands were 5.0 and 3.6, respectively. The vertical distribution of leaf-area index in the unthinned stand resembled a normal distribution. The vertical distribution of leaf-area index in the thinned stand would have resembled a normal distribution, except that thinning operations resulted in a truncated distribution of leaf-area index at the canopy base.


1991 ◽  
Vol 21 (12) ◽  
pp. 1760-1764 ◽  
Author(s):  
Steven B. Jack ◽  
James N. Long

It is commonly assumed that mature forest stands with closed canopies support constant amounts (weight or area) of foliage, independent of stand density. For stand leaf area to be constant, mean leaf area must be plastic with respect to density. We examined the relationship between density and both leaf area index and mean leaf area for two contrasting tree species, lodgepole pine (Pinuscontorta var. latifolia Engelm.) and subalpine fir (Abieslasiocarpa (Hook.) Nutt.). In lodgepole pine, leaf area index tended to be constant over a wide range of absolute and relative densities, but in subalpine fir, leaf area index increased with density. Consistent with these results, mean leaf area of lodgepole pine was more plastic with respect to density than mean leaf area of subalpine fir. The presumption of stable leaf area index independent of stand density, therefore, may not be as general as usually assumed owing to differential responses of mean leaf area to density. Differences in plasticity between the two species were attributed to differences in relative shade tolerance and the effect of shade on competitive interactions at high densities.


Geosciences ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 393 ◽  
Author(s):  
Nico Frischbier ◽  
Katharina Tiebel ◽  
Alexander Tischer ◽  
Sven Wagner

(1) Background: Leaf area index (LAI) is an essential structural property of plant canopies and is functionally related to fluxes of energy, water, carbon, and light in ecosystems; coupling the biosphere to the geo-, hydro-, and atmosphere. There is an increasing need for more accurate and traceable measurements among several spatial scales of investigation and modelling. We hypothesize that the spatial variability of LAI at the scale of crown sections of a single European beech (Fagus sylvatica L.) tree in a highly structured, mixed European beech-Norway spruce stand can be determined by simultaneous records of precipitation; (2) Methods: Spatially explicit measurements of throughfall were conducted repeatedly below beech and in forest gaps for rain events in leafed and in leafless periods. Subsequent analysis with a new regression approach resulted in estimating leaf and twig water storage capacities (SCleaf/twig) at point level independent of within-crown lateral flow mechanisms. Inverse modelling was used to estimate spatial litterfall (n = 99) distribution and litter production (mass, area, numbers) for single trees, as a function of diameter at breast height; (3) Results: As revealed by a linear mixed-effects model, SCleaf at the center of a beech canopies amounts to 4.9 mm in average and significantly decreases in the direction of the crown edges to an average value of 1.1 mm. Based on diameter-sensitive prediction of litter production, specific leaf area wetting capacity amounts to 0.260 l·m−2. A linear within-canopy dynamic of LAI was found with a mean of 17.6 m2·m−2 in the center and 4.0 m2·m−2 at the edges; and (4) Conclusions: The application of the method provided plausible results and can be extended to further throughfall datasets and tree species. Unravelling the causes and magnitude of spatial- and temporal heterogeneity of forest ecosystem properties contribute to overall progress in geosciences by improving the understanding how the biosphere relates to the hydro- and atmosphere.


2000 ◽  
Vol 30 (3) ◽  
pp. 440-447 ◽  
Author(s):  
Ralf Küßner ◽  
Reinhard Mosandl

IIn three mature Norway spruce (Picea abies (L.) Karst.) stands of the Erzgebirge (Ore Mountains) in eastern Germany, the performance of the LAI-2000 plant canopy analyzer (LI-COR instruments) was tested for indirect estimation of leaf area index (LAI). The LAI-2000 calculates effective leaf area index (LAIe, m2/m2) resulting from radiation measurements and subsequent model calculations. LAIe underestimated directly estimated half the total leaf area index (LAI0.5t, m2/m2) by 37-82% as determined from allometric relationships derived from subsample harvesting. The degree of underestimation was dependent upon stand density in two of three spruce stands examined; it was the highest in sparsely stocked plots. The relationship of LAIe to allometrically determined LAI0.5t for one of the three stands differed significantly from the other two spruce stands and the underestimation of LAI0.5t was less distinct. This was explained by stand structure, i.e., higher amounts of nonassimilating surfaces relative to LAI0.5t. These results indicate that the LAI-2000 is not generally applicable for estimation of LAI in mature spruce stands of the Erzgebirge because of effects of stand structure on LAIe-LAI0.5t relationships, which are stand specific.


2017 ◽  
Vol 14 (9) ◽  
pp. 1863-1872 ◽  
Author(s):  
Kwangchol Kim ◽  
Ming-cheng Wang ◽  
Sailesh Ranjitkar ◽  
Su-hong Liu ◽  
Jian-chu Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document