scholarly journals Individual Fit Testing of Hearing-Protection Devices Based on Microphones in Real Ears among Workers in Industries with High-Noise-Level Manufacturing

Author(s):  
Chien-Chen Chiu ◽  
Terng-Jou Wan

Hearing-protection devices (HPDs) are particularly important in protecting the hearing of workers. The aim of this study was to prevent hearing damage in workplaces in Taiwan. It was conducted to determine the actual sound attenuation of the personal attenuation rating (PAR) values when wearing HPDs via measurements from field microphones in workers’ real ears (F-MIRE). Across 105 measurement trials for the Classic™ roll-down foam earplug HPDs worn by the workers, there were 23 cases of ineffective protection (including caution and fail); the proportion was 20% (including the first measurement and re-wear of HPDs after education and training). In addition, re-education and training in how to wear the HPDs was provided, improving wearing skills. A total of 29 testees wearing the Classic™ roll-down foam earplug HPDs failed to meet the pass standard for the first PAR test, and 6 of them improved and subsequently passed the PAR test. The improvement rate was 20%. These 23 testees switched to another HPD, namely Kneading-Free Push-Ins™ earplugs. From this group, 16 effective sound attenuation values were obtained, with an improvement rate of 70%. However, seven testees failed to pass the PAR test, and after education, training, and replacement of HPDs with different types, they still could not pass the PAR test. At that time, even if the UltraFit™ pre-molded earplugs were adopted again for wear and replacement, they were still unable to pass the PAR test. This HPD was eventually replaced with the PELTOR X4A Earmuff HPD and then tested again, with these HPDs finally passing the PAR test. In Taiwan, the use of fit testing has been increasing but it is not a common practice, and few studies on hearing-protection fit testing have been conducted in this country. The goal of this study was to gain more insight into the current hearing protection situation, including field attenuation of HPDs obtained by workers, the effects of training on improving the attenuation of HPDs after F-MIRE measurements, and the awareness of hearing health and motivation on the use of HPDs in a high-noise-level environment.

Author(s):  
Chanbeom Kwak ◽  
Woojae Han

To prevent intensive noise exposure in advance and be safely controlled during such exposure, hearing protection devices (HPDs) have been widely used by workers. The present study evaluates the effectiveness of these HPDs, partitioned into three different outcomes, such as sound attenuation, sound localization, and speech perception. Seven electronic journal databases were used to search for published articles from 2000 to 2021. Based on inclusion criteria, 20 articles were chosen and then analyzed. For a systematic review and meta-analysis, standardized mean differences (SMDs) and effect size were calculated using a random-effect model. The funnel plot and Egger’s regression analysis were conducted to assess the risk of bias. From the overall results of the included 20 articles, we found that the HPD function performed significantly well for their users (SMDs: 0.457, 95% confidence interval (CI): 0.034–0.881, p < 0.05). Specifically, a subgroup analysis showed a meaningful difference in sound attenuation (SMDs: 1.080, 95% CI: 0.167–1.993, p < 0.05) when to wear and not to wear HPDs, but indicated no significance between the groups for sound localization (SMDs: 0.177, 95% CI: 0.540–0.894, p = 0.628) and speech perception (SMDs: 0.366, 95% CI: −0.100–1.086, p = 0.103). The HPDs work well for their originally designated purposes without interfering to find the location of the sound sources and for talking between the workers. Taking into account various factors, such as the characteristics of the users, selection of appropriate types, and fitting methods for wearing in different circumstances, seems to be necessary for a reliable systematic analysis in terms of offering the most useful information to the workers.


2017 ◽  
Vol 60 (12) ◽  
pp. 3393-3403 ◽  
Author(s):  
Rachel E. Bouserhal ◽  
Annelies Bockstael ◽  
Ewen MacDonald ◽  
Tiago H. Falk ◽  
Jérémie Voix

Purpose Studying the variations in speech levels with changing background noise level and talker-to-listener distance for talkers wearing hearing protection devices (HPDs) can aid in understanding communication in background noise. Method Speech was recorded using an intra-aural HPD from 12 different talkers at 5 different distances in 3 different noise conditions and 2 quiet conditions. Results This article proposes models that can predict the difference in speech level as a function of background noise level and talker-to-listener distance for occluded talkers. The proposed model complements the existing model presented by Pelegrín-García, Smits, Brunskog, and Jeong (2011) and expands on it by taking into account the effects of occlusion and background noise level on changes in speech sound level. Conclusions Three models of the relationship between vocal effort, background noise level, and talker-to-listener distance for talkers wearing HPDs are presented. The model with the best prediction intervals is a talker-dependent model that requires the users' unoccluded speech level at 10 m as a reference. A model describing the relationship between speech level, talker-to-listener distance, and background noise level for occluded talkers could eventually be incorporated with radio protocols to transmit verbal communication only to an intended set of listeners within a given spatial range—this range being dependent on the changes in speech level and background noise level.


Geophysics ◽  
1965 ◽  
Vol 30 (6) ◽  
pp. 1085-1093 ◽  
Author(s):  
Daniel Silverman ◽  
N. R. Sparks

One of the most promising methods of identification or cancellation of multiple reflections on seismic records involves the calculation of synthetic records with all primaries and multiples, and the matching of the synthetic record with the field record. Such matching suffers today from the lack of precise information about the velocities and densities of the formations, dips of beds nonvertical transmission, etc. One possibility of improving this match involves the use of the earth itself as the “synthetic record computer.” In this process, the upcoming (or downgoing) primary signals are fed back into the earth with a vibrator in proper amplitude and phase to create a synthetic record of multiples only, which should match the multiples on the field record. Of course, only those multiple reflections which include a downward reflection from beds above the primary signal detectors will be included in the synthetic record of multiples only. The paper reports two experimental programs. One was carried out on an analog network to simulate the near‐surface and deeper formations, with means to feed back the upcoming signals in proper timing and polarity to cancel the multiples. These experiments indicated the theoretical workability of the process. The second program of experiments involved the use of a vertical spread to detect the upcoming and downgoing signals, and the use of a hydraulic vibrator to impress those signals back into the earth. These experiments were not conclusive because of insufficient power in the vibrator and high noise level. However, they indicated possible ways in which these limitations might be reduced, and the method applied to routine field operations.


Internet of Things is a medium by which we can control our appliances from anywhere in the world. In Industry many times accidents happened due to negligence of workers and there are some risky areas in Industry where workers not able to go and work. Voice-controlled Industrial parameters monitoring and controlling system are used in the risky areas of Industries usually in power plants where there are high noise level and pollution to avoid accidents. Here an induction motor speed, temperature, pressure, etc are monitored and controlled to avoid damage to the motor. These all the parameters are going to monitor and controlled automatically. In this paper, Google-Assistant and Adafruit IO server are used for monitoring and controlling. By using this system the workers can monitor and control Industrial appliances and problems occur in Industries where workers not able to go and work are overcome.


2007 ◽  
Vol 66 (7) ◽  
pp. 661-672
Author(s):  
V. V. Zolotarev ◽  
G. V. Ovechkin

2014 ◽  
Vol 26 (1-2) ◽  
pp. 29-36 ◽  
Author(s):  
MMM Hoque ◽  
LK Basak ◽  
M Rokanuzzaman ◽  
Sajal Roy

The study was carried out to ascertain the level of noise pollution at different locations in Tangail municipal area. For this purpose noise levels were measured at different locations at different periods of the day. At all the locations the level of noise were found to be higher than the acceptable level. The intensity of noise was found lower with increasing distance from the road side. The noise level on the main road near hospital, shopping center and bazars was above the standard level recommended by MoEF. From the survey motor vehicles were found as the main cause of high noise level. The most common problems with high noise level were found to increased heart beat, drowsiness, headache and hearing impairment. DOI: http://dx.doi.org/10.3329/bjsr.v26i1-2.20228 Bangladesh J. Sci. Res. 26(1-2): 29-36, December-2013


Sign in / Sign up

Export Citation Format

Share Document