scholarly journals Nicotine and Its Downstream Metabolites in Maternal and Cord Sera: Biomarkers of Prenatal Smoking Exposure Associated with Offspring DNA Methylation

Author(s):  
Parnian Kheirkhah Rahimabad ◽  
Thilani M. Anthony ◽  
A. Daniel Jones ◽  
Shakiba Eslamimehr ◽  
Nandini Mukherjee ◽  
...  

Nicotine is a major constituent of cigarette smoke. Its primary metabolite in maternal and cord sera, cotinine, is considered a biomarker of prenatal smoking. Nicotine and cotinine half-lives are decreased in pregnancy due to their increased rate of metabolism and conversion to downstream metabolites such as norcotinine and 3-hydroxycotinine. Hence, downstream metabolites of nicotine may provide informative biomarkers of prenatal smoking. In this study of three generations (F0-mothers, F1-offspring who became mothers, and F2-offspring), we present a biochemical assessment of prenatal smoking exposure based on maternal and cord sera levels of nicotine, cotinine, norcotinine, and 3-hydroxycotinine. As potential markers of early effects of prenatal smoking, associations with differential DNA methylation (DNAm) in the F1- and F2-offspring were assessed. All metabolites in maternal and cord sera were associated with self-reported prenatal smoking, except for nicotine. We compared maternal self-report of smoking in pregnancy to biochemical evidence of prenatal smoking exposure. Self-report of F0-mothers of F1 in 1989–1990 had more accuracy identifying prenatal smoking related to maternal metabolites in maternal serum (sensitivity = 94.6%, specificity = 86.9%) compared to self-reports of F1-mothers of F2 (2010–2016) associated with cord serum markers (sensitivity = 66.7%, specificity = 78.8%). Nicotine levels in sera showed no significant association with any DNAm site previously linked to maternal smoking. Its downstream metabolites, however, were associated with DNAm sites located on the MYO1G, AHRR, and GFI1 genes. In conclusion, cotinine, norcotinine, and 3-hydroxycotinine in maternal and cord sera provide informative biomarkers and should be considered when assessing prenatal smoking. The observed association of offspring DNAm with metabolites, except for nicotine, may imply that the toxic effects of prenatal nicotine exposure are exerted by downstream metabolites, rather than nicotine. If differential DNA methylation on the MYO1G, AHRR, and GFI1 genes transmit adverse effects of prenatal nicotine exposure to the child, there is a need to investigate whether preventing changes in DNA methylation by reducing the metabolic rate of nicotine and conversion to harmful metabolites may protect exposed children.

2004 ◽  
Vol 96 (6) ◽  
pp. 2213-2219 ◽  
Author(s):  
Narong Simakajornboon ◽  
Vukmir Vlasic ◽  
Hong Li ◽  
Hemant Sawnani

Current evidence suggests that maternal smoking is associated with decreased respiratory drive and blunted hypoxic ventilatory response (HVR) in the newborn. The effect of prenatal nicotine exposure on overall changes in HVR has been studied; however, there is limited data on the effect of nicotine exposure on each component of biphasic HVR. To examine this issue, 5-day timed-pregnant Sprague-Dawley rats underwent surgical implantation of an osmotic minipump containing either normal saline (Con) or a solution of nicotine tartrate (Nic) to continuously deliver free nicotine at 6 mg·kg of maternal weight-1·day-1. Rat pups at postnatal days 5, 10, 15, and 20 underwent hypoxic challenges with 10% O2 for 20 min using whole body plethysmography. At postnatal day 5, Nic was associated with attenuation of peak HVR; peak minute ventilaton increased 44.0 ± 6.8% (SE) from baseline in Nic pups, whereas that of Con pups increased 62.9 ± 5.1% ( P < 0.05). Nic pups also had a reduction in the magnitude of ventilatory roll-off; minute ventilation at 15 min decreased 7.3 ± 7.1% in Nic pups compared with 27.3 ± 4.0% in Con pups ( P < 0.05). No significant difference in HVR was noted at postnatal days 10, 15, and 20. Hypercapnic response was similar at all ages. We further investigated the effect of prenatal nicotine exposure on PKC expression in the caudal brain stem (CB) of developing rats. At postnatal day 5, Nic was associated with increased expression of PKC-β and PKC-δ in CB, whereas other PKC isoforms were not affected. It is concluded that prenatal nicotine exposure is associated with modulation of biphasic HVR and a selective increase in the expression of PKC-β and PKC-δ within the CB of developing rats.


2005 ◽  
Vol 53 (1) ◽  
pp. S93.4-S93
Author(s):  
B. W. Barsness ◽  
T. Martenson ◽  
R. Paz ◽  
A. Allan

Sign in / Sign up

Export Citation Format

Share Document