scholarly journals Electromagnetic Exposure of Personnel Involved in Cardiac MRI Examinations in 1.5T, 3T and 7T Scanners

Author(s):  
Katarzyna Sklinda ◽  
Jolanta Karpowicz ◽  
Andrzej Stępniewski

(1) Background: It has been hypothesised that a significant increase in the use of cardiac magnetic resonance (CMR), for example, when examining COVID-19 convalescents using magnetic resonance imaging (MRI), has an influence the exposure profiles of medical personnel to static magnetic fields (STmf). (2) Methods: Static exposure to STmf (SEmf) was recorded during activities that modelled performing CMR by radiographers. The motion-induced time variability of that exposure (TVEmf) was calculated from SEmf samples. The results were compared with: (i) labour law requirements; (ii) the distribution of vertigo perception probability near MRI magnets; and (iii) the exposure profile when actually performing a head MRI. (3) Results: The exposure profiles of personnel managing 42 CMR scans (modelled using medium (1.5T), high (3T) and ultrahigh (7T) field scanners) were significantly different than when managing a head MRI. The majority of SEmf and TVEmf samples (up to the 95th percentile) were at low vertigo perception probability (SEmf < 500 mT, TVEmf < 600 mT/s), but a small fraction were at medium/high levels; (4) Conclusion: Even under the “normal working conditions” defined for SEmf (STmf < 2T) by labour legislation (Directive 2013/35/EC), increased CMR usage increases vertigo-related hazards experienced by MRI personnel (a re-evaluation of electromagnetic safety hazards is suggested in the case of these or similar changes in work organisation).

2019 ◽  
Vol 23 (04) ◽  
pp. 405-418 ◽  
Author(s):  
James F. Griffith ◽  
Radhesh Krishna Lalam

AbstractWhen it comes to examining the brachial plexus, ultrasound (US) and magnetic resonance imaging (MRI) are complementary investigations. US is well placed for screening most extraforaminal pathologies, whereas MRI is more sensitive and accurate for specific clinical indications. For example, MRI is probably the preferred technique for assessment of trauma because it enables a thorough evaluation of both the intraspinal and extraspinal elements, although US can depict extraforaminal neural injury with a high level of accuracy. Conversely, US is probably the preferred technique for examination of neurologic amyotrophy because a more extensive involvement beyond the brachial plexus is the norm, although MRI is more sensitive than US for evaluating muscle denervation associated with this entity. With this synergy in mind, this review highlights the tips for examining the brachial plexus with US and MRI.


Endoscopy ◽  
2004 ◽  
Vol 36 (10) ◽  
Author(s):  
BP McMahon ◽  
JB Frøkjær ◽  
A Bergmann ◽  
DH Liao ◽  
E Steffensen ◽  
...  

2016 ◽  
Vol 1 (1) ◽  
pp. 4
Author(s):  
Marymol Koshy ◽  
Bushra Johari ◽  
Mohd Farhan Hamdan ◽  
Mohammad Hanafiah

Hypertrophic cardiomyopathy (HCM) is a global disease affecting people of various ethnic origins and both genders. HCM is a genetic disorder with a wide range of symptoms, including the catastrophic presentation of sudden cardiac death. Proper diagnosis and treatment of this disorder can relieve symptoms and prolong life. Non-invasive imaging is essential in diagnosing HCM. We present a review to deliberate the potential use of cardiac magnetic resonance (CMR) imaging in HCM assessment and also identify the risk factors entailed with risk stratification of HCM based on Magnetic Resonance Imaging (MRI).


2018 ◽  
pp. 26-32
Author(s):  
E. A. Stepanova ◽  
М. V. Vishnyakova ◽  
V. I. Sambulov ◽  
I. Т. Mukhamedov

Glomus tumor is one of the most common temporal bone tumors. Most of them are benign and locally invasive, some are occasionally able to metastasize and have signs of malignancy. Diagnostic imaging is necessary before treatment. Computer tomography (CT) is traditionally used as a primary method of diagnosis, to recognize changes in the temporal bone. Role of magnetic resonance imaging (MRI) in temporal bone tumor diagnosis is not definitively determined.Purpose. To assess the possibilities of computer and magnetic resonance tomography, to develop an algorithm for the application of diagnostic imaging methods in the diagnosis of glomus tumors of the temporal bone.Material and methods. The article presents the experience of diagnosing 30 patients with glomus tumors.Results. The tympanic form of the glomus tumor was observed in 11 cases (37%), tympano-yugular in 19 cases (63%). CT and MRI data totally coincided in cases of small tumors (type A and B). In the presence of extended forms CT ability of assessing bone invasion, involvement of the internal carotid artery, internal jugular vein, and dural sinuses was lower than the MRI.


2019 ◽  
pp. 10-23
Author(s):  
T. A. Akhadov ◽  
S. Yu. Guryakov ◽  
M. V. Ublinsky

For a long time, there was a need to apply magnetic resonance imaging (MRI) technique for lung visualization in clinical practice. The development of this method is stimulated by necessity of the emergence of an alternative to computed tomography, especially when radiation and injection of iodine-containing contrast agents are contraindicated or undesirable, for example, in pregnant women and children, people with intolerance to iodinated contrast. One of the reasons why lung MRI is still rarely used is lack of elaborated standardized protocols that would be adapted to clinical needs of medical society. This publication is a current literature review on the use of MRI in lung studies.


2007 ◽  
Vol 30 (4) ◽  
pp. 41
Author(s):  
A. Dechant

On the morning of October 10, 2003, the residents of New York awoke to find that an entire page of their beloved paper, The Times, had been usurped for the sole purpose of flagrant self-promotion and protestation. On his own behalf, Dr. Raymand Damadian had purchased a one page spread bemoaning his exclusion in the Nobel Prize for Medicine that year which had previously been awarded to Paul Laterbur and Peter Mansfield for their contributions to the development of Magnetic Resonance Imaging (MRI). Over the course of the next few months, the public was to witness a series of such articles proclaiming that a shameful wrong had been committed, and that the truth would eventually prove Dr. Damadian’s accusations. That truth lay in the early theoretical and technical foundations that led to the discovery of MRI. Described just after the Second World War, nuclear magnetic resonance (NMR) was hailed as a breakthrough in physical chemistry for which Felix Bloch and Edward Purcell were awarded the Nobel Prize in Physics in 1952. Two decades later, in 1971, Dr. Damadian discovered that differences between the NMR signals of cancerous and normal tissue might provide a rapid means of cancer detection. However, Laterbur and Mansfield were the first to actually demonstrate images of live tissue using the application of magnetic gradients – the key to modern MRI. Though speculation exists that Dr. Damadian may have been excluded from the prize due to his religious beliefs or political rivalry, only time will reveal the whole truth when the Nobel files are opened 50 years hence. Bradley W. The Nobel Prize: Three Investigators Allowed but Two Were Chosen. Journal of Magnetic Resonance Imaging 2004; 19:520. Laterbur P. Image formation by induced local interactions: examples of employing nuclear magnetic resonance. Nature 1973; 242:190-191. Mansfield P, Grannell P. “NMR diffraction in solids?” Journal of Physics C: Solid State Physics 1973; 63:L433-L426.


Sign in / Sign up

Export Citation Format

Share Document