scholarly journals Spatial–Temporal Features of Coordination Relationship between Regional Urbanization and Rail Transit—A Case Study of Beijing

Author(s):  
Xuanxuan Xia ◽  
Hongchang Li ◽  
Xujuan Kuang ◽  
Jack Strauss

Urban rail transit is an important transportation infrastructure that mitigates the congestion of the central city and realizes compact city space development. However, the literature on the spatiotemporal coupling of urbanization and rail transit from the urban scale and its influencing factors is still uncommon. Taking Beijing as an example, based on the theory of coupling coordination, we have constructed a comprehensive indicator system for regional urbanization (hereafter RU) (including population, economy, and spatial urbanization) and rail transit (hereafter RT). On this basis, we use the entropy method, coupling coordination degree model, and spatial autocorrelation analysis method to explore the spatiotemporal characteristics of the overall and pairwise coupling coordination between population, economy, spatial urbanization, and rail transit. Finally, we analyze the spatial correlation and standard deviational ellipse analysis of the coupling coordination degree between RU and RT. The results indicate the following: (1) In addition to population urbanization, the other urbanization indicators and the RT level all show a downward–rising–falling trend from 2006 to 2017, among which the level of economic urbanization is the highest. The degree of coupling coordination between RU and RT is unbalanced development and shows a trend of first rising and then falling. (2) The degree of coupling coordination between RU and RT presents an imbalanced distribution in various regions, and the coupling coordination degree in the central urban areas is significantly higher than that in the outer suburbs. (3) From 2006 to 2017, the spatial correlation of the coupling coordination degree between the various systems has a similar changing trend. Moreover, the distribution of the spatial agglomeration points of the coupling coordination degree between RU and the RT is similar, showing a decreasing trend from the central urban area to the surrounding urban area. Therefore, relevant departments can rationally plan the construction of urban rail transit according to the coordination relationship between RU and RT and the spatial aggregation degree to realize the benign and sustainable development between urban especially suburbanization and rail transit.

2015 ◽  
Vol 730 ◽  
pp. 327-330 ◽  
Author(s):  
Zhi Da Jiao ◽  
Chun Hui Gan

Based on the operation and management of station, the research was mainly about the risk assessment method of the crowd crushing and tramping accidents in urban rail transit stations. The indicator system about the crowd crushing and tramping accidents in urban rail transit station was established. The C2R model of data envelopment analysis (DEA) was used in the risk assessment, and the model was solved with MATLAB programming. The result of the analysis is generally consistent with the actual situation.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Hui Sun ◽  
Hanlin Li ◽  
Yuning Wang ◽  
Yufei Yang

Facing serious environmental and traffic problems, urban rail transit companies, with the features of large capacity and high efficiency, have become an important choice for many large cities that are prioritizing public transportation and encouraging green travel options. As the construction speed of rail transit projects accelerates, the demand for materials and devices required for construction and operation is also increasing for urban rail transit companies. Therefore, the scientific selection of suppliers to meet construction and operation demands has become a problem that must be addressed. This paper presents an intuitionistic fuzzy factorial analysis model in a random environment, where correlative phenomena among each of the indicators and a random decision-making environment are considered. The evaluation indicator system of rail suppliers is established by considering the influencing factors. The extracted common factors indicate the nature of the studied object in a most direct way. The suppliers are evaluated from the perspective of the number of intuitionistic fuzzy factors and are ranked by their scores. Finally, the Tianjin urban rail transit company is used as a case study to illustrate the validity and feasibility of the method. The results can help urban rail transit companies improve their existing supplier selection method.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yun Wang ◽  
Xuedong Yan ◽  
Yu Zhou ◽  
Jiaxi Wang ◽  
Shasha Chen

As one of the most important urban commuter transportation modes, urban rail transit (URT) has been acting as a key solution for supporting mobility needs in high-density urban areas. However, in recent years, high frequency of unexpected events has caused serious service disruptions in URT system, greatly harming passenger safety and resulting in severe traffic delays. Therefore, there is an urgent need to study emergency evacuation problem in URT. In this paper, a method of bus dynamic coscheduling is proposed and two models are built based on different evacuation destinations including URT stations and surrounding bus parking spots. A dynamic coscheduling scheme for buses can be obtained by the models. In the model solution process, a new concept—the equivalent parking spot—is proposed to transform the nonlinear model into an integer linear programming (ILP) problem. A case study is conducted to verify the feasibility of models. Also, sensitivity analysis of two vital factors is carried out to analyze their effects on the total evacuation time. The results reveal that the designed capacity of buses has a negative influence on the total evacuation time, while an increase in the number of passengers has a positive effect. Finally, some significant optimizing strategies are proposed.


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Zhao Gao ◽  
Min Yang ◽  
Guoqiang Li ◽  
Jinghua Tai

CICTP 2020 ◽  
2020 ◽  
Author(s):  
Yucheng Wang ◽  
Mo Chen ◽  
Zhi Dong ◽  
Liang Tian ◽  
Kuo Guan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document