scholarly journals Creation of a Multimodal Urban Transportation Network through Spatial Data Integration from Authoritative and Crowdsourced Data

2021 ◽  
Vol 10 (7) ◽  
pp. 470
Author(s):  
Rodrigo Smarzaro ◽  
Clodoveu A. Davis ◽  
José Alberto Quintanilha

One of the most significant challenges in cities concerns urban mobility. Urban mobility involves the use of different modes of transport, which can be individual or collective, and different organizations can produce their respective datasets that, usually, are used isolated from each other. The lack of an integrated view of the entire multimodal urban transportation network (MUTN) brings difficulties to citizens and urban planning. However, obtaining reliable and up-to-date spatial data is not an easy task. To address this problem, we propose a framework for creating a multimodal urban transportation network by integrating spatial data from heterogeneous sources. The framework standardizes the representation of different datasets through a common conceptual model for spatial data (schema matching), uses topological, geometric, and semantic information to find matches among objects from different datasets (data matching), and consolidated them into a single representation using data fusion techniques in a complementary, redundant and cooperative way. Spatial data integration makes it possible to use reliable data from official sources (possibly outdated and expensive to produce) and crowdsourced data (continuously updated and low cost to use). To evaluate the framework, a MUTN for the Brazilian city of Belo Horizonte was built integrating authoritative and crowdsourced data (OpenStreetMap, Foursquare, Facebook Places, Google Places, and Yelp), and then it was used to compute routes among eighty locations using four transportation possibilities: walk, drive, transit, and drive–walk. The time and distance of each route were compared against their equivalent from Google Maps, and the results point to a great potential for using the framework in urban computing applications that require an integrated view of the entire multimodal urban transportation network.

2012 ◽  
Vol 209-211 ◽  
pp. 252-255
Author(s):  
Li Guo ◽  
Hai Ying Zheng ◽  
Yong Hong Wang ◽  
Bin Zhang

Data matching technology is a key technology for spatial data integration and fusion. This paper represents a solution to the complex polygon area, defines the area overlapped rate in the aspect of geometric measure, presents the data matching idea based on area overlapped rate .Then, this paper discusses and realizes the data matching relation of area elements including one to one , many to one and many to many. At last, region targets are set as the study object, large scale data are taken for example. We draw the conclusion: this algorithm is efficient.


Author(s):  
Booma Sowkarthiga Balasubramani ◽  
Isabel F. Cruz

2012 ◽  
Vol 229-231 ◽  
pp. 1895-1899
Author(s):  
Shen Yi Qian ◽  
Hao Dong Zhu

Data integration of geospatial data in distributed, heterogeneous environment involves the use of semantic ontologies. In this kind of integration system, semantic technologies play an important role in improving performance and effectiveness of spatial queries. This paper focuses on methods of query optimization based on spatial semantics at the top level of semantic layer in central data integration systems. After analyzing the hybrid approach for spatial data integration, two categories of query optimization strategies are proposed based on detailed examination of special characteristics of spatial data. With spatial knowledge explicitly specified in ontologies and associated rules, spatial queries can be optimized intelligently.


Author(s):  
S. Hasani ◽  
A. Sadeghi-Niaraki ◽  
M. Jelokhani-Niaraki

In today's world, the necessity for spatial data for various organizations is becoming so crucial that many of these organizations have begun to produce spatial data for that purpose. In some circumstances, the need to obtain real time integrated data requires sustainable mechanism to process real-time integration. Case in point, the disater management situations that requires obtaining real time data from various sources of information. One of the problematic challenges in the mentioned situation is the high degree of heterogeneity between different organizations data. To solve this issue, we introduce an ontology-based method to provide sharing and integration capabilities for the existing databases. In addition to resolving semantic heterogeneity, better access to information is also provided by our proposed method. Our approach is consisted of three steps, the first step is identification of the object in a relational database, then the semantic relationships between them are modelled and subsequently, the ontology of each database is created. In a second step, the relative ontology will be inserted into the database and the relationship of each class of ontology will be inserted into the new created column in database tables. Last step is consisted of a platform based on service-oriented architecture, which allows integration of data. This is done by using the concept of ontology mapping. The proposed approach, in addition to being fast and low cost, makes the process of data integration easy and the data remains unchanged and thus takes advantage of the legacy application provided.


Sign in / Sign up

Export Citation Format

Share Document