scholarly journals National-Scale Landslide Susceptibility Mapping in Austria Using Fuzzy Best-Worst Multi-Criteria Decision-Making

2020 ◽  
Vol 9 (6) ◽  
pp. 393 ◽  
Author(s):  
Meisam Moharrami ◽  
Amin Naboureh ◽  
Thimmaiah Gudiyangada Nachappa ◽  
Omid Ghorbanzadeh ◽  
Xudong Guan ◽  
...  

Landslides are one of the most detrimental geological disasters that intimidate human lives along with severe damages to infrastructures and they mostly occur in the mountainous regions across the globe. Landslide susceptibility mapping (LSM) serves as a key step in assessing potential areas that are prone to landslides and could have an impact on decreasing the possible damages. The application of the fuzzy best-worst multi-criteria decision-making (FBWM) method was applied for LSM in Austria. Further, the role of employing a few numbers of pairwise comparisons on LSM was investigated by comparing the FBWM and Fuzzy Analytical Hierarchical Process (FAHP). For this study, a wide range of data was sourced from the Geological Survey of Austria, the Austrian Land Information System, Humanitarian OpenStreetMap Team, and remotely sensed data were collected. We used nine conditioning factors that were based on the previous studies and geomorphological characteristics of Austria, such as elevation, slope, slope aspect, lithology, rainfall, land cover, distance to drainage, distance to roads, and distance to faults. Based on the evaluation of experts, the slope conditioning factor was chosen as the best criterion (highest impact on LSM) and the distance to roads was considered as the worst criterion (lowest impact on LSM). LSM was generated for the region based on the best and worst criterion. The findings show the robustness of FBWM in landslide susceptibility mapping. Additionally, using fewer pairwise comparisons revealed that the FBWM can obtain higher accuracy as compared to FAHP. The finding of this research can help authorities and decision-makers to provide effective strategies and plans for landslide prevention and mitigation at the national level.

2019 ◽  
Vol 11 (1) ◽  
pp. 708-726
Author(s):  
Zorgati Anis ◽  
Gallala Wissem ◽  
Vakhshoori Vali ◽  
Habib Smida ◽  
Gaied Mohamed Essghaier

AbstractThe Tunisian North-western region, especially Tabarka and Ain-Drahim villages, presents many landslides every year. Therefore, the landslide susceptibility mapping is essential to frame zones with high landslide susceptibility, to avoid loss of lives and properties. In this study, two bivariate statistical models: the evidential belief functions (EBF) and the weight of evidence (WoE), were used to produce landslide susceptibility maps for the study area. For this, a landslide inventory map was mapped using aerial photo, satellite image and extensive field survey. A total of 451 landslides were randomly separated into two datasets: 316 landslides (70%) for modelling and 135 landslides (30%) for validation. Then, 11 landslide conditioning factors: elevation, slope, aspect, lithology, rainfall, normalized difference vegetation index (NDVI), land cover/use, plan curvature, profile curvature, distance to faults and distance to drainage networks, were considered for modelling. The EBF and WoE models were well validated using the Area Under the Receiver Operating Characteristic (AUROC) curve with a success rate of 87.9% and 89.5%, respectively, and a predictive rate of 84.8% and 86.5%, respectively. The landslide susceptibility maps were very similar by the two models, but the WoE model is more efficient and it can be useful in future planning for the current study area.


Geosciences ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 360 ◽  
Author(s):  
Sansar Raj ◽  
Thimmaiah

Landslides are one of the most damaging geological hazards in mountainous regions such as the Himalayas. The Himalayan region is, tectonically, the most active region in the world that is highly vulnerable to landslides and associated hazards. Landslide susceptibility mapping (LSM) is a useful tool for understanding the probability of the spatial distribution of future landslide regions. In this research, the landslide inventory datasets were collected during the field study of the Kullu valley in July 2018, and 149 landslide locations were collected as global positioning system (GPS) points. The present study evaluates the LSM using three different spatial resolution of the digital elevation model (DEM) derived from three different sources. The data-driven traditional frequency ratio (FR) model was used for this study. The FR model was used for this research to assess the impact of the different spatial resolution of DEMs on the LSM. DEM data was derived from Advanced Land Observing Satellite-1 (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) ALOS-PALSAR for 12.5 m, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global for 30 m, and the Shuttle Radar Topography Mission (SRTM) for 90 m. As an input, we used eight landslide conditioning factors based on the study area and topographic features of the Kullu valley in the Himalayas. The ASTER-Global 30m DEM showed higher accuracy of 0.910 compared to 0.839 for 12.5 m and 0.824 for 90 m DEM resolution. This study shows that that 30 m resolution is better suited for LSM for the Kullu valley region in the Himalayas. The LSM can be used for mitigation and future planning for spatial planners and developmental authorities in the region.


Author(s):  
Gulcin Dinc Yalcin ◽  
Zehra Kamisli Ozturk

In a department store, customers have the opportunity to reach a wide range of consumer goods from different product categories within a single store area. Store layouts generally show the size and location of each department, any permanent structures, fixture locations, and customer traffic patterns. Determining the area sizes to be allocated to each product category and the layout of these areas in the department store is a strategic planning decision problem. The layout problem has been studied in the literature with different approaches where the sizes of the areas are known. The first purpose of this paper is to determine the area sizes of each product category.   Customers decide to go to a department store for several reasons including the quality of products, services, location, etc. These reasons have been studied in the literature. However, “for which product categories do customers decide to go to a department store” is an open question. The second purpose of this paper is to find the frequency of product categories from the viewpoint of the customers. Therefore, our aim is to obtain the required results in a systematic way with multi-criteria decision making methodologies. For this purpose, we perform the Analytic Network Process (ANP) and the Analytic Hierarchy Process (AHP) from the viewpoints of department managers and customers, respectively.   In the ANP model, several tangible and intangible criteria such as product costs, the demands of customers, sales history, overall inventory, floor space and relationship with suppliers are chosen, and the intersections between them are specified. Pairwise comparisons are made by department store managers. The ANP outcome is the weight of each product category, and these weights are considered the percentage of the area size within the store from the viewpoint of the department stores. In the AHP model, a simple model is constructed to define the customers’ preference for each product category. Pairwise comparisons between product categories are made by the customers. Therefore, the outcome of the AHP model is the weight of each product category, and this is the preference of each product category from the viewpoint of the customers. The outcomes show that these weights may be different. This is an expected situation since even if a product category is preferred by some as the driver to visit a department store, the footprint of that category in the actual store may be small. The outcome from customers provides feedback to department store managers on which product category should be diversified as well as the area sizes of those categories.


2021 ◽  
Author(s):  
Sina Paryani ◽  
Aminreza Neshat ◽  
Biswajeet Pradhan

Abstract Landslide is a type of slope processes causing a plethora of economic damage and loss of lives worldwide every year. This study aimed to analyze spatial landslide susceptibility mapping in the Khalkhal-Tarom Basin by integrating an adaptive neuro-fuzzy inference system (ANFIS) with two multi-criteria decision-making approaches, i.e. the stepwise weight assessment ratio analysis (SWARA) and the new best-worst method (BWM) techniques. For this purpose, the first step was to prepare a landslide inventory map, which were then divided randomly by the ratio of 30/70 for model training and validation. Thirteen conditioning factors were used as slope angle, slope aspect, altitude, topographic wetness index (TWI), plan curvature, profile curvature, distance to roads, distance to streams, distance to faults, lithology, land use, rainfall and normalized difference vegetation index (NDVI). After the database was created, the BWM and the SWARA methods were utilized to determine the relationships between the sub-criteria and landslides. Finally, landslide susceptibility maps were generated by implementing ANFIS-SWARA and ANFIS-BWM hybrid models, and the ROC curve was employed to appraise the predictive accuracy of each model. The results showed that the areas under curves (AUC) for the ANFIS-SWARA and ANFIS-BWM models were 73.6% and 75% respectively, and that the novel BWM yielded more realistic relationships between effective factors and the landslides. As a result, it was more efficient in training the ANFIS. Evidently, the generated landslide susceptibility maps (LSMs) can be very efficient in managing land use and preventing the damage caused by the landslide phenomenon.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Pawan Gautam ◽  
Tetsuya Kubota ◽  
Aril Aditian

AbstractThe main objective of this study is to understand the overall impact of earthquake in upper Indrawati Watershed, located in the high mountainous region of Nepal. Hence, we have assessed the relationship between the co-seismic landslide and underlying causative factors as well as performed landslide susceptibility mapping (LSM) to identify the landslide susceptible zone in the study area. We assessed the landslides distribution in terms of density, number, and area within 85 classes of 13 causal factors including slope, aspect, elevation, formation, land cover, distance to road and river, soil type, total curvature, seismic intensity, topographic wetness index, distance to fault, and flow accumulation. The earthquake-induced landslide is clustered in Northern region of the study area, which is dominated by steep rocky slope, forested land, and low human density. Among the causal factors, 'slope' showed positive correlation for landslide occurrence. Increase in slope in the study area also escalates the landslide distribution, with highest density at 43%, landslide number at 4.34/km2, and landslide area abundance at 2.97% in a slope class (> 50°). We used logistic regression (LR) for LSM integrating with geographic information system. LR analysis depicts that land cover is the best predictor followed by slope and distance to fault with higher positive coefficient values. LSM was validated by assessing the correctly classified landslides under susceptibility categories using area under curve (AUC) and seed cell area index (SCAI). The LSM approach showed good accuracy with respective AUC values for success rate and prediction rate of 0.843 and 0.832. Similarly, the decreasing SCAI value from very low to very high susceptibility categories advise satisfactory accuracy of the LSM approach.


Sign in / Sign up

Export Citation Format

Share Document