scholarly journals A comparison among fuzzy multi-criteria decision making, bivariate, multivariate and machine learning models in landslide susceptibility mapping

2021 ◽  
Vol 12 (1) ◽  
pp. 1741-1777
Author(s):  
Quoc Bao Pham ◽  
Yacine Achour ◽  
Sk Ajim Ali ◽  
Farhana Parvin ◽  
Matej Vojtek ◽  
...  
2018 ◽  
Vol 10 (8) ◽  
pp. 1252 ◽  
Author(s):  
Prima Kadavi ◽  
Chang-Wook Lee ◽  
Saro Lee

The main purpose of this study was to produce landslide susceptibility maps using various ensemble-based machine learning models (i.e., the AdaBoost, LogitBoost, Multiclass Classifier, and Bagging models) for the Sacheon-myeon area of South Korea. A landslide inventory map including a total of 762 landslides was compiled based on reports and aerial photograph interpretations. The landslides were randomly separated into two datasets: 70% of landslides were selected for the model establishment and 30% were used for validation purposes. Additionally, 20 landslide condition factors divided into five categories (topographic factors, hydrological factors, soil map, geological map, and forest map) were considered in the landslide susceptibility mapping. The relationships among landslide occurrence and landslide conditioning factors were analyzed and the landslide susceptibility maps were calculated and drawn using the AdaBoost, LogitBoost, Multiclass Classifier, and Bagging models. Finally, the maps were validated using the area under the curve (AUC) method. The Multiclass Classifier method had higher prediction accuracy (85.9%) than the Bagging (AUC = 85.4%), LogitBoost (AUC = 84.8%), and AdaBoost (84.0%) methods.


2021 ◽  
Author(s):  
Ali Nouh Mabdeh ◽  
Akif Al-Fugara ◽  
Mohammad Ahmadlou ◽  
Biswajeet Pradhan

Abstract Indivisual machine learning models show different limitations such as low generalization power for modeling nonlinear phenomena with complex behavior. In recent years, one of the best approaches to this issue is to use ensemble models. The purpose of this paper is to investigate the predictive power and modeling of three novel ensemble models constructed with four machine learning models: Decision Tree (DT), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Naive Bayes (NB) models based on three approaches of Bagging, boosting and Random Subspace (RS) in landslide susceptibility mapping (LSM) in the Province of Ajloun in Jordan. A total number of 91 landslide locations along with 16 conditioning factors in LSM were identified and used. Also, before modeling, the selection of effective conditioning factors in LSM was done using genetic algorithm and four single models including DT, KNN, NB and SVM. The selected factors were used in modeling with individual and ensemble models. The results show that the area under the receiver operating characteristic curve (AUROC) for ensemble models is significantly higher than the individual models and the AUC for ensemble models was on average 14% higher than individual models. Based on the results, the most accurate models were RS ensemble model (AUROC = 0.850), Boosting (AUROC = 0.848) and Bagging (AUROC = 0.814), respectively. This study showed that by combining the results of simple machine learning models and making ensemble models, models with the desired accuracy can be achieved.


2020 ◽  
Vol 9 (6) ◽  
pp. 393 ◽  
Author(s):  
Meisam Moharrami ◽  
Amin Naboureh ◽  
Thimmaiah Gudiyangada Nachappa ◽  
Omid Ghorbanzadeh ◽  
Xudong Guan ◽  
...  

Landslides are one of the most detrimental geological disasters that intimidate human lives along with severe damages to infrastructures and they mostly occur in the mountainous regions across the globe. Landslide susceptibility mapping (LSM) serves as a key step in assessing potential areas that are prone to landslides and could have an impact on decreasing the possible damages. The application of the fuzzy best-worst multi-criteria decision-making (FBWM) method was applied for LSM in Austria. Further, the role of employing a few numbers of pairwise comparisons on LSM was investigated by comparing the FBWM and Fuzzy Analytical Hierarchical Process (FAHP). For this study, a wide range of data was sourced from the Geological Survey of Austria, the Austrian Land Information System, Humanitarian OpenStreetMap Team, and remotely sensed data were collected. We used nine conditioning factors that were based on the previous studies and geomorphological characteristics of Austria, such as elevation, slope, slope aspect, lithology, rainfall, land cover, distance to drainage, distance to roads, and distance to faults. Based on the evaluation of experts, the slope conditioning factor was chosen as the best criterion (highest impact on LSM) and the distance to roads was considered as the worst criterion (lowest impact on LSM). LSM was generated for the region based on the best and worst criterion. The findings show the robustness of FBWM in landslide susceptibility mapping. Additionally, using fewer pairwise comparisons revealed that the FBWM can obtain higher accuracy as compared to FAHP. The finding of this research can help authorities and decision-makers to provide effective strategies and plans for landslide prevention and mitigation at the national level.


Sign in / Sign up

Export Citation Format

Share Document