scholarly journals Effective Population Size, Gene Flow, and Species Status in a Narrow Endemic Sunflower, Helianthus neglectus, Compared to Its Widespread Sister Species, H. petiolaris

2010 ◽  
Vol 11 (2) ◽  
pp. 492-506 ◽  
Author(s):  
Andrew Raduski ◽  
Loren Rieseberg ◽  
Jared Strasburg
2019 ◽  
Author(s):  
Yue Shi ◽  
Jiarui Chen ◽  
Jianping Su ◽  
Tongzuo Zhang ◽  
Samuel K. Wasser

AbstractPopulation reduction is generally assumed to reduce the population’s genetic diversity and hence its ability to adapt to environmental change. However, if life history traits that promote gene flow buffer populations from such impacts, conservation efforts should aim to maintain those traits in vulnerable species. Tibetan antelope (Pantholops hodgsonii) has experienced population reduction by 95% due to poaching during the 20th century. We hypothesize that opportunities for gene flow provided by their sex-specific migration buffered their genetic diversity from the poaching impacts. We measured the mtDNA (control region, CR) and nuDNA (microsatellites or STRs) diversity, population differentiation, along with the change in effective population size (pre-poaching era vs. post-poaching era) and tested for a genetic bottleneck. Our results showed that Tibetan antelope maintained considerable genetic diversity in both mtDNA CR and STR markers (Hd = 0.9970 and Hobs = 0.8446, respectively), despite a marked reduction in post-poaching effective population size 368.9 (95% CI of 249.3 - 660.6) compared to the pre-poaching average (4.93×103 - 4.17×104). Post-poached populations also had low population structure and showed no evidence of a genetic bottleneck. Pairwise Fst values using CR haplotype frequencies were higher than those using STR allele frequencies, suggesting different degrees of gene flow mediated by females and males. This study suggests that the Tibetan antelope’s sex-specific migration buffered their loss of genetic diversity in the face of severe demographic decline. These findings highlight the importance of recognizing the traits likely to maintain genetic diversity and promoting conservation efforts that allow them to be exercised. For Tibetan antelope, this requires assuring that their migration routes remain unobstructed by growing human disturbances while continuing to enforce anti-poaching law enforcement efforts.


2017 ◽  
Author(s):  
John Hawks

AbstractHuman populations have a complex history of introgression and of changing population size. Human genetic variation has been affected by both these processes, so that inference of past population size depends upon the pattern of gene flow and introgression among past populations. One remarkable aspect of human population history as inferred from genetics is a consistent “wave” of larger effective population size, prior to the bottlenecks and expansions of the last 100,000 years. Here I carry out a series of simulations to investigate how introgression and gene flow from genetically divergent ancestral populations affect the inference of ancestral effective population size. Both introgression and gene flow from an extinct, genetically divergent population consistently produce a wave in the history of inferred effective population size. The time and amplitude of the wave reflect the time of origin of the genetically divergent ancestral populations and the strength of introgression or gene flow. These results demonstrate that even small fractions of introgression or gene flow from ancient populations may have large effects on the inference of effective population size.


2020 ◽  
Vol 33 (1) ◽  
pp. 44-59
Author(s):  
Rafael Núñez-Domínguez ◽  
Ricardo E Martínez-Rocha ◽  
Jorge A Hidalgo-Moreno ◽  
Rodolfo Ramírez-Valverde ◽  
José G García-Muñiz

Background: Romosinuano cattle breed in Mexico has endured isolation and it is necessary to characterize it in order to facilitate sustainable genetic management. Objective: To assess the evolution of the structure and genetic diversity of the Romosinuano breed in Mexico, through pedigree analysis. Methods: Pedigree data was obtained from Asociación Mexicana de Criadores de Ganado Romosinuano y Lechero Tropical (AMCROLET). The ENDOG program (4.8 version) was used to analyze two datasets, one that includes upgrading from F1 animals (UP) and the other with only straight-bred cattle (SP). For both datasets, three reference populations were defined: 1998-2003 (RP1), 2004-2009 (RP2), and 2010-2017 (RP3). The pedigree included 3,432 animals in UP and 1,518 in SP. Demographic parameters were: Generation interval (GI), equivalent number of generations (EG), pedigree completeness index (PCI), and gene flow among herds. Genetic parameters were: Inbreeding (F) and average relatedness (AR) coefficients, effective population size (Nec), effective number of founders and ancestors, and number of founder genome equivalents. Results: The GI varied from 6.10 to 6.54 for UP, and from 6.47 to 7.16 yr for SP. The EG of the UP and SP improved >63% from RP1 to RP3. The PCI increased over time. No nucleus or isolated herds were found. For RP3, F and AR reached 2.08 and 5.12% in the UP, and 2.55 and 5.94% in the SP. For RP3, Nec was 57 in the UP and 45 in the SP. Genetic diversity losses were attributed mainly (>66%) to genetic drift, except for RP3 in the SP (44%). Conclusions: A reduction of the genetic diversity has been occurring after the Romosinuano breed association was established in Mexico, and this is mainly due to random loss of genes.Keywords: effective population size; gene flow; genetic diversity; genetic drift; generation interval; inbreeding; pedigree; population structure; probability of gene origin; Romosinuano cattle. Resumen Antecedentes: La raza bovina Romosinuano ha estado prácticamente aislada en México y requiere ser caracterizada para un manejo genético sostenible. Objetivo: Evaluar la evolución de la estructura y diversidad genética de la raza Romosinuano en México, mediante el análisis del pedigrí. Métodos: Los datos genealógicos provinieron de la Asociación Mexicana de Criadores de Ganado Romosinuano y Lechero Tropical (AMCROLET). Los análisis se realizaron con el programa ENDOG (versión 4.8) para dos bases de datos, una que incluyó animales en cruzamiento absorbente (UP) a partir de F1 y la otra con sólo animales puros (SP). Para ambas bases de datos se definieron tres poblaciones de referencia: 1998-2003 (RP1), 2004- 2009 (RP2), y 2010-2017 (RP3). El pedigrí incluyó 3.432 animales en la UP y 1.518 en la SP. Los parámetros demográficos fueron: intervalo generacional (GI), número de generaciones equivalentes (EG), índice de completitud del pedigrí (PCI), y flujo de genes entre hatos. Los parámetros genéticos fueron: coeficientes de consanguinidad (F) y de relación genética aditiva (AR), tamaño efectivo de la población (Nec), número efectivo de fundadores y ancestros, y número equivalente de genomas fundadores. Resultados: El GI varió de 6,10 a 6,54 para la UP, y de 6,47 a 7,16 años para la SP. El EG de la UP y la SP mejoró >63%, de RP1 a RP3. El PCI aumentó a través de los años, pero más para la SP que para la UP. No se encontraron hatos núcleo o aislados. Para RP3, F y AR alcanzaron 2,08 y 5,12% en la UP, y 2,55 y 5,94% en la SP. Para RP3, Nec fue 57 en la UP y 45 en la SP. Más de 66% de las pérdidas en diversidad genética se debieron a deriva genética, excepto para RP3 en la UP (44%). Conclusiones: una reducción de la diversidad genética ha estado ocurriendo después de que se formó la asociación de criadores de ganado Romosinuano en México, y es debida principalmente a pérdidas aleatorias de genes.Palabras clave: consanguinidad; deriva genética; diversidad genética; estructura poblacional; flujo de genes; ganado Romosinuano; intervalo generacional; pedigrí; probabilidad de origen del gen; tamaño efectivo de población. Resumo Antecedentes: A raça bovina Romosinuano tem estado praticamente isolada no México e precisa ser caracterizada para um manejo genético sustentável. Objetivo: Avaliar a evolução da estrutura e diversidade genética da raça Romosinuano no México, através da análise de pedigree. Métodos: Os dados genealógicos vieram da Asociación Mexicana de Criadores de Ganado Romosinuano y Lechero Tropical (AMCROLET). As análises foram feitas com o programa ENDOG (versão 4.8) para duas bases de dados, uma que incluiu animais em cruzamento absorvente (UP) a partir da F1 e a outra base de dados somente com animais puros (SP). Para ambas bases de dados foram definidas três populações de referência: 1998-2003 (RP1), 2004-2009 (RP2) e 2010-2017 (RP3). O pedigree incluiu 3.432 animais na UP e 1.518 na SP. Os parâmetros demográficos foram: intervalo entre gerações (GI), número de gerações equivalentes (EG), índice de completude do pedigree (PCI), e fluxo de genes entre rebanhos. Os parâmetros genéticos foram: coeficiente de consanguinidade (F) e da relação genética aditiva (AR), tamanho efetivo da população (Nec), número efetivo de fundadores e ancestrais, e número equivalente de genomas fundadores. Resultados: O GI variou de 6,10 a 6,54 para a UP, e de 6,47 a 7,16 anos para a SP. EG da UP e a SP melhorou >63%, de RP1 a RP3. O PCI aumentou ao longo dos anos, mas mais para a SP do que para o UP. Não se encontraram rebanhos núcleo ou isolados. Para RP3, F e AR alcançaram 2,08 e 5,12% na UP, e 2,55 e 5,94% na SP. Para RP3, Nec foi 57 na UP e 45 na SP. Mais de 66% das perdas em diversidade genética foram ocasionadas pela deriva genética, exceto para RP3 no UP (44%). Conclusões: Depois que a associação da raça Romosinuano foi estabelecida no México, tem ocorrido uma redução da diversidade genética, principalmente devido a perdas aleatórias de genes.Palavras-chave: consanguinidade; deriva genética; diversidade genética, estrutura populacional; fluxo de genes; intervalo entre gerações; pedigree; probabilidade de origem do gene; Romosinuano; tamanho efetivo da população.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rupert Stacy ◽  
Jorge Palma ◽  
Miguel Correia ◽  
Anthony B. Wilson ◽  
José Pedro Andrade ◽  
...  

AbstractGenetic diversity is the raw foundation for evolutionary potential. When genetic diversity is significantly reduced, the risk of extinction is heightened considerably. The long-snouted seahorse (Hippocampus guttulatus) is one of two seahorse species occurring in the North-East Atlantic. The population living in the Ria Formosa (South Portugal) declined dramatically between 2001 and 2008, prompting fears of greatly reduced genetic diversity and reduced effective population size, hallmarks of a genetic bottleneck. This study tests these hypotheses using samples from eight microsatellite loci taken from 2001 and 2013, on either side of the 2008 decline. The data suggest that the population has not lost its genetic diversity, and a genetic bottleneck was not detectable. However, overall relatedness increased between 2001 to 2013, leading to questions of future inbreeding. The effective population size has seemingly increased close to the threshold necessary for the population to retain its evolutionary potential, but whether these results have been affected by sample size is not clear. Several explanations are discussed for these unexpected results, such as gene flow, local decline due to dispersal to other areas of the Ria Formosa, and the potential that the duration of the demographic decline too short to record changes in the genetic diversity. Given the results presented here and recent evidence of a second population decline, the precise estimation of both gene flow and effective population size via more extensive genetic screening will be critical to effective population management.


2015 ◽  
Vol 179 (2) ◽  
pp. 319-334 ◽  
Author(s):  
Jane F. Sampson ◽  
Maggie Hankinson ◽  
Shelley McArthur ◽  
Sarah Tapper ◽  
Margaret Langley ◽  
...  

2020 ◽  
Vol 16 (2) ◽  
Author(s):  
Renan Marcelo Portela ◽  
Evandro Vagner Tambarussi ◽  
Ananda Virginia de Aguiar ◽  
Flávio B. Gandara ◽  
Fabiana Schmidt Bandeira Peres ◽  
...  

2019 ◽  
Author(s):  
Herman L Mays ◽  
David A Oehler ◽  
Kyle W Morrison ◽  
Ariadna E Morales ◽  
Alyssa Lycans ◽  
...  

Abstract Rockhopper penguins are delimited as 2 species, the northern rockhopper (Eudyptes moseleyi) and the southern rockhopper (Eudyptes chrysocome), with the latter comprising 2 subspecies, the western rockhopper (Eudyptes chrysocome chrysocome) and the eastern rockhopper (Eudyptes chrysocome filholi). We conducted a phylogeographic study using multilocus data from 114 individuals sampled across 12 colonies from the entire range of the northern/southern rockhopper complex to assess potential population structure, gene flow, and species limits. Bayesian and likelihood methods with nuclear and mitochondrial DNA, including model testing and heuristic approaches, support E. moseleyi and E. chrysocome as distinct species lineages with a divergence time of 0.97 Ma. However, these analyses also indicated the presence of gene flow between these species. Among southern rockhopper subspecies, we found evidence of significant gene flow and heuristic approaches to species delimitation based on the genealogical diversity index failed to delimit them as species. The best-supported population models for the southern rockhoppers were those where E. c. chrysocome and E. c. filholi were combined into a single lineage or 2 lineages with bidirectional gene flow. Additionally, we found that E. c. filholi has the highest effective population size while E. c. chrysocome showed similar effective population size to that of the endangered E. moseleyi. We suggest that the current taxonomic definitions within rockhopper penguins be upheld and that E. chrysocome populations, all found south of the subtropical front, should be treated as a single taxon with distinct management units for E. c. chrysocome and E. c. filholi.


Lankesteriana ◽  
2016 ◽  
Vol 3 (2) ◽  
Author(s):  
Raymond L. Tremblay

<div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p><span>Evolution through either natural selection or genetic drift is dependent on variation at the genetic and mor- phological levels. Processes that influence the genetic structure of populations include mating systems, effective population size, mutation rates and gene flow among populations. </span></p></div></div></div>


Genetics ◽  
1991 ◽  
Vol 129 (2) ◽  
pp. 573-583 ◽  
Author(s):  
R K Chesser

Abstract Expressions describing the accumulation of gene correlations within and among lineages and individuals of a population are derived. The model permits different migration rates by males and females and accounts for various breeding tactics within lineages. The resultant equations enable calculation of the probabilistic quantities for the fixation indices, rates of loss of genetic variation, accumulation of inbreeding, and coefficients of relationship for the population at any generation. All fixation indices were found to attain asymptotic values rapidly despite the consistent loss of genetic variation and accumulation of inbreeding within the population. The time required to attain asymptotic values, however, was prolonged when gene flow among lineages was relatively low (less than 20%). The degree of genetic differentiation among breeding groups, inbreeding coefficients, and gene correlations within lineages were found to be primarily functions of breeding tactics within groups rather than gene flow among groups. Thus, the asymptotic value of S. Wright's island model is not appropriate for describing genetic differences among groups within populations. An alternative solution is provided that under limited conditions will reduce to the original island model. The evolution of polygynous breeding tactics appears to be more favorable for promoting intragroup gene correlations than modification of migration rates. Inbreeding and variance effective sizes are derived for populations that are structured by different migration and breeding tactics. Processes that reduce the inbreeding effective population size result in a concomitant increase in variance effective population size.


Sign in / Sign up

Export Citation Format

Share Document