coalescent approach
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 1)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
Vol 12 ◽  
Author(s):  
Sabina Irene Lara-Cabrera ◽  
Maria de la Luz Perez-Garcia ◽  
Carlos Alonso Maya-Lastra ◽  
Juan Carlos Montero-Castro ◽  
Grant T. Godden ◽  
...  

The evolutionary relationships of Salvia have been difficult to estimate. In this study, we used the Next Generation Sequencing method Hyb-Seq to evaluate relationships among 90 Lamiaceae samples, including representatives of Mentheae, Ocimeae, Salvia subgenera Audibertia, Leonia, Salvia, and 69 species of subgenus Calosphace, representing 32 of Epling's sections. A bait set was designed in MarkerMiner using available transcriptome data to enrich 119 variable nuclear loci. Nuclear and chloroplast loci were assembled with hybphylomaker (HPM), followed by coalescent approach analyses for nuclear data (ASTRAL, BEAST) and a concatenated Maximum Likelihood analysis of chloroplast loci. The HPM assembly had an average of 1,314,368 mapped reads for the sample and 527 putative exons. Phylogenetic inferences resolved strongly supported relationships for the deep-level nodes, agreeing with previous hypotheses which assumed that subgenus Audibertia is sister to subgenus Calosphace. Within subgenus Calosphace, we recovered eight monophyletic sections sensu Epling, Cardinalis, Hastatae, Incarnatae, and Uricae in all the analyses (nDNA and cpDNA), Biflorae, Lavanduloideae, and Sigmoideae in nuclear analyses (ASTRAL, BEAST) and Curtiflorae in ASTRAL trees. Network analysis supports deep node relationships, some of the main clades, and recovers reticulation within the core Calosphace. The chloroplast phylogeny resolved deep nodes and four monophyletic Calosphace sections. Placement of S. axillaris is distinct in nuclear evidence and chloroplast, as sister to the rest of the S. subg. Calosphace in chloroplast and a clade with “Hastatae clade” sister to the rest of the subgenus in nuclear evidence. We also tested the monophyly of S. hispanica, S. polystachia, S. purpurea, and S. tiliifolia, including two samples of each, and found that S. hispanica and S. purpurea are monophyletic. Our baits can be used in future studies of Lamiaceae phylogeny to estimate relationships between genera and among species. In this study, we presented a Hyb-Seq phylogeny for complex, recently diverged Salvia, which could be implemented in other Lamiaceae.



Author(s):  
Jelle Koopsen ◽  
Edyth Parker ◽  
Alvin X Han ◽  
Thijs van de Laar ◽  
Colin Russell ◽  
...  

Abstract Background It is unclear whether unrestricted access and high uptake of direct-acting antivirals (DAAs) is sufficient to eliminate hepatitis C virus (HCV) in high-risk populations such as men who have sex with men (MSM). This study presents historic trends and current dynamics of HCV transmission among MSM in Amsterdam based on sequence data collected between 1994 and 2019. Methods HVR1 sequences of 232 primary HCV infections and 56 reinfections were obtained from 244 MSM in care in Amsterdam. Maximum-likelihood phylogenies were constructed for HCV genotypes separately, and time-scaled phylogenies were constructed using a Bayesian coalescent approach. Transmission clusters were determined by Phydelity and trends in the proportion of unclustered sequences over time were evaluated using logistic regression. Results Seventy-six percent (218/288) of sequences were part of 21 transmission clusters and 13 transmission pairs. Transmission cluster sizes ranged from 3 to 44 sequences. Most clusters were introduced between the late 1990s and early 2010s and no new clusters were introduced after 2012. The proportion of unclustered sequences of subtype 1a, the most prevalent subtype in this population, fluctuated between 0% and 20% in 2009-2012, after which an increase occurred from 0% in 2012 to 50% in 2018. Conclusion The proportion of external introductions of HCV infections among MSM in Amsterdam has recently increased coinciding with high DAA uptake. Frequent international transmission events will likely complicate local micro-elimination efforts. Therefore, international collaboration combined with international scale-up of prevention, testing and treatment of HCV infections (including reinfections) is warranted, in particular for local micro-elimination efforts.



2020 ◽  
Vol 45 (2) ◽  
pp. 361-374
Author(s):  
Jessica Nayara Carvalho Francisco ◽  
Lúcia G. Lohmann

Abstract—The Amazon houses a large proportion of the overall biodiversity currently found on Earth. Despite that, our knowledge of Amazonian biodiversity is still limited. In this study, we reconstruct the phylogeny of Pachyptera (Bignoniaceae), a genus of neotropical lianas that is centered in the Amazon. We then use this phylogenetic framework to re-evaluate species limits and study the biogeographic history of the genus. We sampled three molecular markers (i.e. ndhF, rpl32-trnL, and PepC) and 51 individuals representing the breadth of morphological variation and geographic distribution of all species recognized in the genus. We used this information to reconstruct phylogenetic relationships among individuals of Pachyptera using Bayesian and maximum likelihood approaches. The resulting molecular phylogeny was used as a basis to test species limits within the P. kerere species complex using a cpDNA coalescent approach (GMYC). GMYC identified five potential species within the P. kerere species complex that were subsequently evaluated in the light of morphology. Morphological data supported the recognition of four of the five potential species suggested by GMYC, all of which were also supported by a multispecies coalescent model in a Bayesian framework. The phylogeny of Pachyptera was time-calibrated and used to reconstruct the biogeographical history of the genus. We identified historically important migration pathways using our comprehensive cpDNA dataset and a Bayesian stochastic search variable selection (BSSVS) framework. Our results indicate that the genus originated in lowland Amazonia during the Middle Eocene, and subsequently occupied Central America and the Andes. Most of the diversification of Pachyptera occurred in the Miocene, a period of intense perturbations in South America.



2020 ◽  
Vol 12 (5) ◽  
pp. 715-719
Author(s):  
Junfeng Liu ◽  
Qiao Liu ◽  
Qingzhu Yang

Abstract Gene flow between species may cause variations in branch length and topology of gene tree, which are beyond the expected variations from ancestral processes. These additional variations make it difficult to estimate parameters during speciation with gene flow, as the pattern of these additional variations differs with the relationship between isolation and migration. As far as we know, most methods rely on the assumption about the relationship between isolation and migration by a given model, such as the isolation-with-migration model, when estimating parameters during speciation with gene flow. In this article, we develop a multispecies coalescent approach which does not rely on any assumption about the relationship between isolation and migration when estimating parameters and is called mstree. mstree is available at https://github.com/liujunfengtop/MStree/ and uses some mathematical inequalities among several factors, which include the species divergence time, the ancestral population size, and the number of gene trees, to estimate parameters during speciation with gene flow. Using simulations, we show that the estimated values of ancestral population sizes and species divergence times are close to the true values when analyzing the simulation data sets, which are generated based on the isolation-with-initial-migration model, secondary contact model, and isolation-with-migration model. Therefore, our method is able to estimate ancestral population sizes and speciation times in the presence of different modes of gene flow and may be helpful to test different theories of speciation.



ZooKeys ◽  
2020 ◽  
Vol 929 ◽  
pp. 117-161
Author(s):  
Bruce D. Patterson ◽  
Paul W. Webala ◽  
Tyrone H. Lavery ◽  
Bernard R. Agwanda ◽  
Steven M. Goodman ◽  
...  

The Old World leaf-nosed bats (Hipposideridae) are aerial and gleaning insectivores that occur throughout the Paleotropics. Both their taxonomic and phylogenetic histories are confused. Until recently, the family included genera now allocated to the Rhinonycteridae and was recognized as a subfamily of Rhinolophidae. Evidence that Hipposideridae diverged from both Rhinolophidae and Rhinonycteridae in the Eocene confirmed their family rank, but their intrafamilial relationships remain poorly resolved. We examined genetic variation in the Afrotropical hipposiderids Doryrhina, Hipposideros, and Macronycteris using relatively dense taxon-sampling throughout East Africa and neighboring regions. Variation in both mitochondrial (cyt-b) and four nuclear intron sequences (ACOX2, COPS, ROGDI, STAT5) were analyzed using both maximum likelihood and Bayesian inference methods. We used intron sequences and the lineage delimitation method BPP—a multilocus, multi-species coalescent approach—on supported mitochondrial clades to identify those acting as independent evolutionary lineages. The program StarBEAST was used on the intron sequences to produce a species tree of the sampled Afrotropical hipposiderids. All genetic analyses strongly support generic monophyly, with Doryrhina and Macronycteris as Afrotropical sister genera distinct from a Paleotropical Hipposideros; mitochondrial analyses interpose the genera Aselliscus, Coelops, and Asellia between these clades. Mitochondrial analyses also suggest at least two separate colonizations of Africa by Asian groups of Hipposideros, but the actual number and direction of faunal interchanges will hinge on placement of the unsampled African-Arabian species H. megalotis. Mitochondrial sequences further identify a large number of geographically structured clades within species of all three genera. However, in sharp contrast to this pattern, the four nuclear introns fail to distinguish many of these groups and their geographic structuring disappears. Various distinctive mitochondrial clades are consolidated in the intron-based gene trees and delimitation analyses, calling into question their evolutionary independence or else indicating their very recent divergence. At the same time, there is now compelling genetic evidence in both mitochondrial and nuclear sequences for several additional unnamed species among the Afrotropical Hipposideros. Conflicting appraisals of differentiation among the Afrotropical hipposiderids based on mitochondrial and nuclear loci must be adjudicated by large-scale integrative analyses of echolocation calls, quantitative morphology, and geometric morphometrics. Integrative analyses will also help to resolve the challenging taxonomic issues posed by the diversification of the many lineages associated with H. caffer and H. ruber.



2020 ◽  
Vol 16 (2) ◽  
Author(s):  
Renan Marcelo Portela ◽  
Evandro Vagner Tambarussi ◽  
Ananda Virginia de Aguiar ◽  
Flávio B. Gandara ◽  
Fabiana Schmidt Bandeira Peres ◽  
...  


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shahed Uddin Ahmed Shazib ◽  
Peter Vďačný ◽  
Marek Slovák ◽  
Eleni Gentekaki ◽  
Mann Kyoon Shin

Abstract The ciliate genus Spirostomum comprises eight morphospecies, inhabiting diverse aquatic environments worldwide, where they can be used as water quality indicators. Although Spirostomum species are relatively easily identified using morphological methods, the previous nuclear rDNA-based phylogenies indicated several conflicts in morphospecies delineation. Moreover, the single locus phylogenies and previous analytical approaches could not unambiguously resolve phylogenetic relationships among Spirostomum morphospecies. Here, we attempt to investigate species boundaries and evolutionary history of Spirostomum taxa, using 166 new sequences from multiple populations employing one mitochondrial locus (CO1 gene) and two nuclear loci (rRNA operon and alpha-tubulin gene). In accordance with previous studies, relationships among the eight Spirostomum morphospecies were poorly supported statistically in individual gene trees. To overcome this problem, we utilised for the first time in ciliates the Bayesian coalescent approach, which accounts for ancestral polymorphisms, incomplete lineage sorting, and recombination. This strategy enabled us to robustly resolve deep relationships between Spirostomum species and to support the hypothesis that taxa with compact macronucleus and taxa with moniliform macronucleus each form a distinct lineage. Bayesian coalescent-based delimitation analyses strongly statistically supported the traditional morphospecies concept but also indicated that there are two S. minus-like cryptic species and S. teres is non-monophyletic. Spirostomum teres was very likely defined by a set of ancestral features of lineages that also gave rise to S. yagiui and S. dharwarensis. However, molecular data from type populations of the morphospecies S. minus and S. teres are required to unambiguously resolve the taxonomic problems.



2019 ◽  
Vol 75 ◽  
pp. 103944 ◽  
Author(s):  
Marwa Khedhiri ◽  
Kais Ghedira ◽  
Anissa Chouikha ◽  
Henda Touzi ◽  
Amel Sadraoui ◽  
...  


Diversity ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 88
Author(s):  
Emily Fountain ◽  
Robert Cruickshank ◽  
Adrian Paterson

The delineation of species is important to the fields of evolution, ecology and conservation. The use of only a single line of evidence, e.g., morphology or a single gene sequence, may underestimate or overestimate the level of diversity within a taxon. This problem often occurs when organisms are morphologically similar but genetically different, i.e., for cryptic species. The Hadramphus genus contains four endangered, morphologically similar species of weevils, each endemic to a specific New Zealand region (Hadramphus spinipennis Chatham Islands, H. stilbocarpae Fiordland, H. tuberculatus McKenzie Country, H. pittospori Poor Knights Islands). The systematic relationships among these species are unclear. We used samples from these species and a closely related genus, Lyperobius huttoni, to obtain data from the mitochondrial gene cytochrome c oxidase subunit I and the nuclear gene internal transcribe spacer 2. In addition to the multi-locus coalescent approach, we modelled morphological characteristics combined with the genetic data. We found that H. spinipennis, H. tuberculatus and H. stilbocarpae were a closely related clade. Despite a strong morphological similarity, Hadramphus pittospori was found to be genetically distinct from the other Hadramphus species, which supports the resurrection of the monotypic genus Karocolens for this species.



Genetica ◽  
2018 ◽  
Vol 146 (2) ◽  
pp. 235-241 ◽  
Author(s):  
Zihao Yuan ◽  
Wei Huang ◽  
Shikai Liu ◽  
Peng Xu ◽  
Rex Dunham ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document