scholarly journals The p24 Complex Contributes to Specify Arf1 for COPI Coat Selection

2021 ◽  
Vol 22 (1) ◽  
pp. 423
Author(s):  
Susana Sabido-Bozo ◽  
Ana Maria Perez-Linero ◽  
Javier Manzano-Lopez ◽  
Sofia Rodriguez-Gallardo ◽  
Auxiliadora Aguilera-Romero ◽  
...  

Golgi trafficking depends on the small GTPase Arf1 which, upon activation, drives the assembly of different coats onto budding vesicles. Two related types of guanine nucleotide exchange factors (GEFs) activate Arf1 at different Golgi sites. In yeast, Gea1 in the cis-Golgi and Gea2 in the medial-Golgi activate Arf1 to form COPI­coated vesicles for retrograde cargo sorting, whereas Sec7 generates clathrin/adaptor­coated vesicles at the trans-Golgi network (TGN) for forward cargo transport. A central question is how the same activated Arf1 protein manages to assemble different coats depending on the donor Golgi compartment. A previous study has postulated that the interaction between Gea1 and COPI would channel Arf1 activation for COPI vesicle budding. Here, we found that the p24 complex, a major COPI vesicle cargo, promotes the binding of Gea1 with COPI by increasing the COPI association to the membrane independently of Arf1 activation. Furthermore, the p24 complex also facilitates the interaction of Arf1 with its COPI effector. Therefore, our study supports a mechanism by which the p24 complex contributes to program Arf1 activation by Gea1 for selective COPI coat assembly at the cis-Golgi compartment.

2019 ◽  
Author(s):  
Luis Sanchez-Pulido ◽  
Chris P Ponting

Abstract Summary CPLANE is a protein complex required for assembly and maintenance of primary cilia. It contains several proteins, such as INTU, FUZ, WDPCP, JBTS17 and RSG1 (REM2- and RAB-like small GTPase 1), whose genes are mutated in ciliopathies. Using two contrasting evolutionary analyses, coevolution-based contact prediction and sequence conservation, we first identified the INTU/FUZ heterodimer as a novel member of homologous HerMon (Hermansky-Pudlak syndrome and MON1-CCZ1) complexes. Subsequently, we identified homologous Longin domains that are triplicated in each of these six proteins (MON1A, CCZ1, HPS1, HPS4, INTU and FUZ). HerMon complexes are known to be Rab effectors and Rab GEFs (Guanine nucleotide Exchange Factors) that regulate vesicular trafficking. Consequently, INTU/FUZ, their homologous complex, is likely to act as a GEF during activation of Rab GTPases involved in ciliogenesis. Supplementary information Supplementary data are available at Bioinformatics online.


2010 ◽  
Vol 21 (11) ◽  
pp. 1836-1849 ◽  
Author(s):  
Florin Manolea ◽  
Justin Chun ◽  
David W. Chen ◽  
Ian Clarke ◽  
Nathan Summerfeldt ◽  
...  

It is widely assumed that class I and II Arfs function interchangeably throughout the Golgi complex. However, we report here that in vivo, Arf3 displays several unexpected properties. Unlike other Golgi-localized Arfs, Arf3 associates selectively with membranes of the trans-Golgi network (TGN) in a manner that is both temperature-sensitive and uniquely dependent on guanine nucleotide exchange factors of the BIGs family. For example, BIGs knockdown redistributed Arf3 but not Arf1 from Golgi membranes. Furthermore, shifting temperature to 20°C, a temperature known to block cargo in the TGN, selectively redistributed Arf3 from Golgi membranes. Arf3 redistribution occurred slowly, suggesting it resulted from a change in membrane composition. Arf3 knockdown and overexpression experiments suggest that redistribution is not responsible for the 20°C block. To investigate in more detail the mechanism for Arf3 recruitment and temperature-dependent release, we characterized several mutant forms of Arf3. This analysis demonstrated that those properties are readily separated and depend on pairs of residues present at opposite ends of the protein. Furthermore, phylogenetic analysis established that all four critical residues were absolutely conserved and unique to Arf3. These results suggest that Arf3 plays a unique function at the TGN that likely involves recruitment by a specific receptor.


2006 ◽  
Vol 34 (5) ◽  
pp. 846-850 ◽  
Author(s):  
S. Yarwood ◽  
D. Bouyoucef-Cherchalli ◽  
P.J. Cullen ◽  
S. Kupzig

Ras proteins are binary switches that, by cycling between inactive GDP-bound and active GTP-bound conformations, regulate multiple cellular signalling pathways including those that control cell growth, differentiation and survival. Approximately 30% of all human tumours express Ras-containing oncogenic mutations that lock the protein into a constitutively active conformation. The activation status of Ras is regulated by two groups of proteins: GEFs (guanine nucleotide-exchange factors) bind to Ras and enhance the exchange of GDP for GTP, thereby activating it, whereas GAPs (GTPase-activating proteins) inactivate Ras by binding to the GTP-bound form and enhancing the hydrolysis of the bound nucleotide back to GDP. In this review, we focus on a group of key regulators of Ras inactivation, the GAP1 family of Ras-GAPs. The members of this family are GAP1m, GAP1IP4BP, CAPRI (Ca2+-promoted Ras inactivator) and RASAL (Ras-GTPase-activating-like protein) and, as we will discuss, they are emerging as important modulators of Ras and small GTPase signalling that are subject to regulation by a diverse array of events and second messenger signals.


2011 ◽  
Vol 286 (27) ◽  
pp. 24364-24373 ◽  
Author(s):  
Hiroaki Kajiho ◽  
Kyoko Sakurai ◽  
Tomohiro Minoda ◽  
Manabu Yoshikawa ◽  
Satoshi Nakagawa ◽  
...  

The small GTPase Rab5, which cycles between GDP-bound inactive and GTP-bound active forms, plays essential roles in membrane budding and trafficking in the early endocytic pathway. Rab5 is activated by various vacuolar protein sorting 9 (VPS9) domain-containing guanine nucleotide exchange factors. Rab21, Rab22, and Rab31 (members of the Rab5 subfamily) are also involved in the trafficking of early endosomes. Mechanisms controlling the activation Rab5 subfamily members remain unclear. RIN (Ras and Rab interactor) represents a family of multifunctional proteins that have a VPS9 domain in addition to Src homology 2 (SH2) and Ras association domains. We investigated whether RIN family members act as guanine nucleotide exchange factors (GEFs) for the Rab5 subfamily on biochemical and cell morphological levels. RIN3 stimulated the formation of GTP-bound Rab31 in cell-free and in cell GEF activity assays. RIN3 also formed enlarged vesicles and tubular structures, where it colocalized with Rab31 in HeLa cells. In contrast, RIN3 did not exhibit any apparent effects on Rab21. We also found that serine to alanine substitutions in the sequences between SH2 and RIN family homology domain of RIN3 specifically abolished its GEF action on Rab31 but not Rab5. We examined whether RIN3 affects localization of the cation-dependent mannose 6-phosphate receptor (CD-MPR), which is transported between trans-Golgi network and endocytic compartments. We found that RIN3 partially translocates CD-MPR from the trans-Golgi network to peripheral vesicles and that this is dependent on its Rab31-GEF activity. These results indicate that RIN3 specifically acts as a GEF for Rab31.


2019 ◽  
Vol 116 (7) ◽  
pp. 2551-2560 ◽  
Author(s):  
Roman C. Hillig ◽  
Brice Sautier ◽  
Jens Schroeder ◽  
Dieter Moosmayer ◽  
André Hilpmann ◽  
...  

Since the late 1980s, mutations in the RAS genes have been recognized as major oncogenes with a high occurrence rate in human cancers. Such mutations reduce the ability of the small GTPase RAS to hydrolyze GTP, keeping this molecular switch in a constitutively active GTP-bound form that drives, unchecked, oncogenic downstream signaling. One strategy to reduce the levels of active RAS is to target guanine nucleotide exchange factors, which allow RAS to cycle from the inactive GDP-bound state to the active GTP-bound form. Here, we describe the identification of potent and cell-active small-molecule inhibitors which efficiently disrupt the interaction between KRAS and its exchange factor SOS1, a mode of action confirmed by a series of biophysical techniques. The binding sites, mode of action, and selectivity were elucidated using crystal structures of KRASG12C–SOS1, SOS1, and SOS2. By preventing formation of the KRAS–SOS1 complex, these inhibitors block reloading of KRAS with GTP, leading to antiproliferative activity. The final compound 23 (BAY-293) selectively inhibits the KRAS–SOS1 interaction with an IC50 of 21 nM and is a valuable chemical probe for future investigations.


2008 ◽  
Vol 19 (6) ◽  
pp. 2650-2660 ◽  
Author(s):  
Ray Ishizaki ◽  
Hye-Won Shin ◽  
Hiroko Mitsuhashi ◽  
Kazuhisa Nakayama

BIG2 and BIG1 are closely related guanine-nucleotide exchange factors (GEFs) for ADP-ribosylation factors (ARFs) and are involved in the regulation of membrane traffic through activating ARFs and recruiting coat protein complexes, such as the COPI complex and the AP-1 clathrin adaptor complex. Although both ARF-GEFs are associated mainly with the trans-Golgi network (TGN) and BIG2 is also associated with recycling endosomes, it is unclear whether BIG2 and BIG1 share some roles in membrane traffic. We here show that knockdown of both BIG2 and BIG1 by RNAi causes mislocalization of a subset of proteins associated with the TGN and recycling endosomes and blocks retrograde transport of furin from late endosomes to the TGN. Similar mislocalization and protein transport block, including furin, were observed in cells depleted of AP-1. Taken together with previous reports, these observations indicate that BIG2 and BIG1 play redundant roles in trafficking between the TGN and endosomes that involves the AP-1 complex.


Sign in / Sign up

Export Citation Format

Share Document