scholarly journals Crucial Role of Rapgef2 and Rapgef6, a Family of Guanine Nucleotide Exchange Factors for Rap1 Small GTPase, in Formation of Apical Surface Adherens Junctions and Neural Progenitor Development in the Mouse Cerebral Cortex

eNeuro ◽  
2016 ◽  
Vol 3 (3) ◽  
pp. ENEURO.0142-16.2016 ◽  
Author(s):  
Kazuhiro Maeta ◽  
Hironori Edamatsu ◽  
Kaori Nishihara ◽  
Junji Ikutomo ◽  
Shymaa E. Bilasy ◽  
...  
2022 ◽  
Vol 8 ◽  
Author(s):  
Mengqi Li ◽  
Qingzheng Jiao ◽  
Wenqiang Xin ◽  
Shulin Niu ◽  
Mingming Liu ◽  
...  

Atherosclerosis is a leading cause of cardiovascular disease, and atherosclerotic cardiovascular disease accounts for one-third of global deaths. However, the mechanism of atherosclerosis is not fully understood. It is well-known that the Rho GTPase family, especially Rho A, plays a vital role in the development and progression of arteriosclerosis. Rho guanine nucleotide exchange factors (Rho GEFs), which act upstream of Rho GTPases, are also involved in the atheromatous pathological process. Despite some research on the role of Rho GEFS in the regulation of atherosclerosis, the number of studies is small relative to studies on the essential function of Rho GEFs. Some studies have preliminarily revealed Rho GEF regulation of atherosclerosis by experiments in vivo and in vitro. Herein, we review the advances in research on the relationship and interaction between Rho GEFs and atheroma to provide a potential reference for further study of atherosclerosis.


2012 ◽  
Vol 40 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Anne-Coline Laurent ◽  
Magali Breckler ◽  
Magali Berthouze ◽  
Frank Lezoualc'h

Epacs (exchange proteins directly activated by cAMP) are guanine-nucleotide-exchange factors for the Ras-like small GTPases Rap1 and Rap2. Epacs were discovered in 1998 as new sensors for the second messenger cAMP acting in parallel to PKA (protein kinase A). As cAMP regulates many important physiological functions in brain and heart, the existence of Epacs raises many questions regarding their role in these tissues. The present review focuses on the biological roles and signalling pathways of Epacs in neurons and cardiac myocytes. We discuss the potential involvement of Epacs in the manifestation of cardiac and central diseases such as cardiac hypertrophy and memory disorders.


Sign in / Sign up

Export Citation Format

Share Document