scholarly journals Cardioprotective Properties of Mannitol—Involvement of Mitochondrial Potassium Channels

2021 ◽  
Vol 22 (5) ◽  
pp. 2395 ◽  
Author(s):  
Katharina Feige ◽  
Janine Rubbert ◽  
Annika Raupach ◽  
Martin Stroethoff ◽  
André Heinen ◽  
...  

Cardiac preconditioning (PC) and postconditioning (PoC) are powerful measures against the consequences of myocardial ischemia and reperfusion (I/R) injury. Mannitol—a hyperosmolar solution—is clinically used for treatment of intracranial and intraocular pressure or promotion of diuresis in renal failure. Next to these clinical indications, different organ-protective properties—e.g., perioperative neuroprotection—are described. However, whether Mannitol also confers cardioprotection via a pre- and/or postconditioning stimulus, possibly reducing consequences of I/R injury, remains to be seen. Therefore, in the present study we investigated whether (1) Mannitol-induced pre- and/or postconditioning induces myocardial infarct size reduction and (2) activation of mitochondrial ATP-sensitive potassium (mKATP) channels is involved in cardioprotection by Mannitol. Experiments were performed on isolated hearts of male Wistar rats via a pressure controlled Langendorff system, randomized into 7 groups. Each heart underwent 33 min of global ischemia and 60 min of reperfusion. Control hearts (Con) received Krebs–Henseleit buffer as vehicle only. Pre- and postconditioning was achieved by administration of 11 mmol/L Mannitol for 10 min before ischemia (Man-PC) or immediately at the onset of reperfusion (Man-PoC), respectively. In further groups, the mKATP channel blocker 5HD, was applied with and without Mannitol, to determine the potential underlying cardioprotective mechanisms. Primary endpoint was infarct size, determined by triphenyltetrazolium chloride staining. Mannitol significantly reduced infarct size both as a pre- (Man-PC) and postconditioning (Man-PoC) stimulus compared to control hearts (Man-PC: 31 ± 4%; Man-PoC: 35 ± 6%, each p < 0.05 vs. Con: 57 ± 9%). The mKATP channel inhibitor completely abrogated the cardioprotective effect of Mannitol-induced pre- (5HD-PC-Man-PC: 59 ± 8%, p < 0.05 vs. Man-PC) and postconditioning (5HD-PoC-Man-PoC: 59 ± 10% vs. p < 0.05 Man-PoC). Infarct size was not influenced by 5HD itself (5HD-PC: 60 ± 14%; 5HD-PoC: 54 ± 14%, each ns vs. Con). This study demonstrates that Mannitol (1) induces myocardial pre- and postconditioning and (2) confers cardioprotection via activation of mKATP channels.

2019 ◽  
Vol 8 (4) ◽  
pp. 507 ◽  
Author(s):  
Raupach ◽  
Reinle ◽  
Stroethoff ◽  
Mathes ◽  
Heinen ◽  
...  

The activation of mitochondrial calcium-sensitive potassium (mBKCa) channels is crucially involved in cardioprotection induced by preconditioning. For milrinone (Mil)-induced preconditioning, the involvement of mBKCa-channels and further mitochondrial signaling is unknown. We hypothesize that (1) Mil-induced preconditioning is concentration-dependent and (2) that the activation of mBKCa-channels, release of reactive oxygen species (ROS), and the mitochondrial permeability transition pore (mPTP) could be involved. Isolated hearts of male Wistar rats were perfused with Krebs-Henseleit buffer and underwent 33 min of ischemia followed by 60 min of reperfusion. For determination of a concentration-dependent effect of Mil, hearts were perfused with different concentrations of Mil (0.3–10 µM) over 10 min before ischemia. In a second set of experiments, in addition to controls, hearts were pretreated with the lowest protective concentration of 1 µM Mil either alone or combined with the mBKCa-channel blocker paxilline (Pax + Mil), or paxilline alone (Pax). In additional groups, Mil was administered with and without the ROS scavenger N-2-mercaptopropionylglycine (MPG + Mil, MPG) or the mPTP inhibitor cyclosporine A (MPG + Mil + CsA, CsA + Mil), respectively. Infarct sizes were determined by triphenyltetrazolium chloride (TTC) staining. The lowest and most cardioprotective concentration was 1 µM Mil (Mil 1: 32 ± 6%; p < 0.05 vs. Con: 63 ± 8% and Mil 0.3: 49 ± 6%). Pax and MPG blocked the infarct size reduction of Mil (Pax + Mil: 53 ± 6%, MPG + Mil: 59 ± 7%; p < 0.05 vs. Mil: 34 ± 6%) without having an effect on infarct size when administered alone (Pax: 53 ± 7%, MPG: 58 ± 5%; ns vs. Con). The combined administration of CsA completely restored the MPG-inhibited cardioprotection of Mil (MPG + Mil + CsA: 35 ± 7%, p < 0.05 vs. MPG + Mil). Milrinone concentration-dependently induces preconditioning. Cardioprotection is mediated by the activation of mBKCa-channels, release of ROS and mPTP inhibition.


2013 ◽  
Vol 34 (suppl 1) ◽  
pp. 777-777
Author(s):  
I. Andreadou ◽  
A. Lazari ◽  
S. I. Bibli ◽  
N. Gaboriaud-Kolar ◽  
A. L. Skaltsounis ◽  
...  

1997 ◽  
Vol 87 (2) ◽  
pp. 361-370 ◽  
Author(s):  
Judy R. Kersten ◽  
Todd J. Schmeling ◽  
Paul S. Pagel ◽  
Garrett J. Gross ◽  
David C. Warltier

Background The authors tested the hypothesis that isoflurane directly preconditions myocardium against infarction via activation of K(ATP) channels and that the protection afforded by isoflurane is associated with an acute memory phase similar to that of ischemic preconditioning. Methods Barbiturate-anesthetized dogs (n = 71) were instrumented for measurement of systemic hemodynamics. Myocardial infarct size was assessed by triphenyltetrazolium chloride staining. All dogs were subjected to a single prolonged (60 min) left anterior descending coronary artery (LAD) occlusion followed by 3 h of reperfusion. Ischemic preconditioning was produced by four 5-min LAD occlusions interspersed with 5-min periods of reperfusion before the prolonged LAD occlusion and reperfusion. The actions of isoflurane to decrease infarct size were examined in dogs receiving 1 minimum alveolar concentration (MAC) isoflurane that was discontinued 5 min before prolonged LAD occlusion. The interaction between isoflurane and ischemic preconditioning on infarct size was evaluated in dogs receiving isoflurane before and during preconditioning LAD occlusions and reperfusions. To test whether the cardioprotection produced by isoflurane can mimic the acute memory of ischemic preconditioning, isoflurane was discontinued 30 min before prolonged LAD occlusion and reperfusion. The mechanism of isoflurane-induced cardioprotection was evaluated in two final groups of dogs pretreated with glyburide in the presence or absence of isoflurane. Results Myocardial infarct size was 25.3 +/- 2.9% of the area at risk during control conditions. Isoflurane and ischemic preconditioning produced significant (P &lt; 0.05) and equivalent reductions in infarct size (ischemic preconditioning alone, 9.6 +/- 2.0; isoflurane alone, 11.8 +/- 2.7; isoflurane and ischemic preconditioning, 5.1 +/- 1.9%). Isoflurane-induced reduction of infarct size also persisted 30 min after discontinuation of the anesthetic (13.9 +/- 1.5%), independent of hemodynamic effects during LAD occlusion. Glyburide alone had no effect on infarct size (28.3 +/- 3.9%), but it abolished the protective effects of isoflurane (27.1 +/- 4.6%). Conclusions Isoflurane directly preconditions myocardium against infarction via activation of K(ATP) channels in the absence of hemodynamic effects and exhibits acute memory of preconditioning in vivo.


2001 ◽  
Vol 280 (2) ◽  
pp. H591-H602 ◽  
Author(s):  
James D. McCully ◽  
Yoshiya Toyoda ◽  
Masahisa Uematsu ◽  
Robert D. Stewart ◽  
Sidney Levitsky

Adenosine-enhanced ischemic preconditioning (APC) extends the cardioprotection of ischemic preconditioning (IPC) by both significantly decreasing myocardial infarct size and significantly enhancing postischemic functional recovery. In this study, the role of adenosine receptors during ischemia-reperfusion was determined. Rabbit hearts ( n = 92) were used for Langendorff perfusion. Control hearts were perfused for 180 min, global ischemia hearts received 30-min ischemia and 120-min reperfusion, and IPC hearts received 5-min ischemia and 5-min reperfusion before ischemia. APC hearts received a bolus injection of adenosine coincident with IPC. Adenosine receptor (A1, A2, and A3) antagonists were used with APC before ischemia and/or during reperfusion. GR-69019X (A1/A3) and MRS-1191/MRS-1220 (A3) significantly increased infarct size in APC hearts when administered before ischemia and significantly decreased functional recovery when administered during both ischemia and reperfusion ( P < 0.05 vs. APC). DPCPX (A1) administered either before ischemia and/or during reperfusion had no effect on APC cardioprotection. APC-enhanced infarct size reduction is modulated by adenosine receptors primarily during ischemia, whereas APC-enhanced postischemic functional recovery is modulated by adenosine receptors during both ischemia and reperfusion.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243220
Author(s):  
Katharina Feige ◽  
Annika Raupach ◽  
Carolin Torregroza ◽  
Jan Muehlenbernd ◽  
Martin Stroethoff ◽  
...  

Coronary effluent collected from ischemic preconditioning (IPC) treated hearts induces myocardial protection in non-ischemic-preconditioned hearts. So far, little is known about the number of IPC cycles required for the release of cardioprotective factors into the coronary effluent to successfully induce cardioprotection. This study investigated the cardioprotective potency of effluent obtained after various IPC cycles in the rat heart. Experiments were performed on isolated hearts of male Wistar rats, mounted onto a Langendorff system and perfused with Krebs-Henseleit buffer. In a first part, effluent was taken before (Con) and after each IPC cycle (Eff 1, Eff 2, Eff 3). IPC was induced by 3 cycles of 5 min of global myocardial ischemia followed by 5 minutes of reperfusion. In a second part, hearts of male Wistar rats were randomized to four groups (each group n = 4–5) and underwent 33 min of global ischemia followed by 60 min of reperfusion. The previously obtained coronary effluent was administered for 10 minutes before ischemia as a preconditioning stimulus. Infarct size was determined at the end of reperfusion by triphenyltetrazoliumchloride (TTC) staining. Infarct size with control effluent was 54±12%. Effluent obtained after IPC confers a strong infarct size reduction independent of the number of IPC cycles (Eff 1: 27±5%; Eff 2: 35±7%; Eff 3: 35±8%, each P<0.05 vs. Con). Effluent extracted after one cycle IPC is comparably protective as after two or three cycles IPC.


1980 ◽  
Vol 53 (3 Suppl) ◽  
pp. S99-S99 ◽  
Author(s):  
R. F. Davis ◽  
L. W. V. DeBoer ◽  
R. E. Rude ◽  
P. R. Maroko

1999 ◽  
Vol 91 (6) ◽  
pp. 1816-1816 ◽  
Author(s):  
Mohamed S. Ismaeil ◽  
Igor Tkachenko ◽  
Robert F. Hickey ◽  
Brian A. Cason

Background When administered before prolonged myocardial ischemia and reperfusion, isoflurane exerts potent cardioprotective effects similar to those inferred by ischemic preconditioning. To determine whether an intact cytoskeleton is critically important in isoflurane-induced preconditioning, the authors used a rabbit model in which isoflurane-induced myocardial preconditioning decreases myocardial infarct size (IS) substantially. In this model, the authors tested whether the microtubule depolymerizing agent, colchicine, would inhibit isoflurane-induced myocardial preconditioning. Methods Myocardial IS was measured in four groups of propofol-anesthetized rabbits, each subjected to 30 min of anterolateral coronary occlusion followed by 3 h of reperfusion. Groups differed only in the pretreatments given, and only the control group received no pretreatment. An isoflurane-preconditioned group was pretreated with 15 min of end-tidal isoflurane, 1.1%, and then 15 min of washout. An isoflurane-plus-colchicine group was administered 2 mg/kg colchicine intravenously before isoflurane pretreatment. A colchicine-control group was administered 2 mg/kg colchicine but no isoflurane pretreatment. Myocardial IS and area at risk (AR) were defined by staining. Data were analyzed by analysis of variance or covariance. Results Infarct size, expressed as a percentage of AR (IS:AR) was 33.6%+/-8.8% (SD) in the control group. Isoflurane preexposure reduced myocardial IS:AR significantly, to 11.8%+/-9.1%. Colchicine pretreatment eliminated the preconditioning-like effect of isoflurane (IS:AR = 32.6%+/-8.7%). Colchicine alone did not alter IS (IS:AR = 27.6%+/-7.1%; P = not significant). Conclusions Colchicine abolished the preconditioning effect of isoflurane but did not increase IS when administered alone. An intact microtubular cytoskeleton is critically important in the process of volatile anesthetic-induced preconditioning.


Sign in / Sign up

Export Citation Format

Share Document