scholarly journals Effects of Antifreeze Protein III on Sperm Cryopreservation of Pacific Abalone, Haliotis discus hannai

2021 ◽  
Vol 22 (8) ◽  
pp. 3917
Author(s):  
Shaharior Hossen ◽  
Md. Rajib Sharker ◽  
Yusin Cho ◽  
Zahid Parvez Sukhan ◽  
Kang Hee Kho

Pacific abalone (Haliotis discus hannai) is a highly commercial seafood in Southeast Asia. The aim of the present study was to improve the sperm cryopreservation technique for this valuable species using an antifreeze protein III (AFPIII). Post-thaw sperm quality parameters including motility, acrosome integrity (AI), plasma membrane integrity (PMI), mitochondrial membrane potential (MMP), DNA integrity, fertility, hatchability, and mRNA abundance level of heat shock protein 90 (HSP90) were determined to ensure improvement of the cryopreservation technique. Post-thaw motility of sperm cryopreserved with AFPIII at 10 µg/mL combined with 8% dimethyl sulfoxide (DMSO) (61.3 ± 2.7%), 8% ethylene glycol (EG) (54.3 ± 3.3%), 6% propylene glycol (PG) (36.6 ± 2.6%), or 2% glycerol (GLY) (51.7 ± 3.0%) was significantly improved than that of sperm cryopreserved without AFPIII. Post-thaw motility of sperm cryopreserved with 2% MeOH and 1 µg/mL of AFPIII was also improved than that of sperm cryopreserved without AFPIII. A combination of 10 µg/mL AFPIII with 8% DMSO resulted in the highest post-thaw motility, showing AI of 60.1 ± 3.9%, PMI of 67.2 ± 4.0%, and MMP of 59.1 ± 4.3%. DNA integrity of sperm cryopreserved using 10 µg/mL AFPIII combined with 8% DMSO was not significantly (p > 0.05) different from that of fresh sperm. Cryopreservation using a combination of AFPIII with 8% DMSO improved fertilization and hatching rates of sperm compared to that of cryopreservation without supplementation of 10 µg/mL AFPIII. Sperm cryopreserved using AFPIII showed higher mRNA abundance levels of HSP90 than those cryopreserved without AFPIII. Results of the present study suggest that 10 µg/mL AFPIII combined with 8% DMSO can be used for large scale cryopreservation of Pacific abalone sperm and for hatchery production.

2021 ◽  
Vol 8 ◽  
Author(s):  
Shaharior Hossen ◽  
Zahid Parvez Sukhan ◽  
Yusin Cho ◽  
Kang Hee Kho

Pacific abalone, Haliotis discus hannai, is a high commercial seafood in South-East Asia. The aim of the present study was to determine effects of cryopreservation on gene expression and post thaw sperm quality of Pacific abalone. Two ions, Na+ (459.1 ± 3.1 mM) and Cl– (515.9 ± 1.1 mM), were predominant in the seminal plasma (pH: 6.8 ± 0.1; osmolarity: 1,126 ± 3 mOsmL–1). Cryopreservation reduced mRNA expression levels of protein kinase A (PKA-C) and heat shock proteins (HSP70 and HSP90) genes in sperm. Fluorescent technique was used to compare morphological defects, acrosome integrity (AI), plasma membrane integrity (PMI), mitochondrial membrane potential (MMP), and DNA integrity of sperm cryopreserved with five different cryopreservation solutions (8% Me2SO, 8% EG, 6% PG, 2% GLY, and 2% MeOH). Droplet in tail and coiled tail defects was not observed for sperm cryopreserved with 8% Me2SO or 2% GLY. Sperm cryopreserved with 8% Me2SO showed improved DNA integrity and lower cryodamage than sperm cryopreserved with other cryoprotectants. Sperm to egg ratio of 10,000:1 was found to be the most suitable ratio for in vitro fertilization among different ratios tested. The fertilization rate of sperm cryopreserved with 8% Me2SO was not significantly (p > 0.05) different from that of sperm cryopreserved with 2% GLY. DNA fragmentation showed strongly negative relationships with sperm quality parameters. Sperm cryopreserved with 8% Me2SO showed higher post thaw quality and mRNA expression of sperm motility associated gene than those cryopreserved with other cryoprotectants. The present research suggests to use 8% Me2SO for cryopreservation of Pacific abalone sperm as well as for hatchery production.


Aquaculture ◽  
2021 ◽  
Vol 541 ◽  
pp. 736820
Author(s):  
Wenzhu Peng ◽  
Feng Yu ◽  
Yiyu Wu ◽  
Yifang Zhang ◽  
Chengkuan Lu ◽  
...  

2022 ◽  
Vol 23 (2) ◽  
pp. 698
Author(s):  
Mi-Jin Choi ◽  
Yeo Reum Kim ◽  
Nam Gyu Park ◽  
Cheorl-Ho Kim ◽  
Young Dae Oh ◽  
...  

Genes that influence the growth of Pacific abalone (Haliotis discus hannai) may improve the productivity of the aquaculture industry. Previous research demonstrated that the differential expression of a gene encoding a C-type lectin domain-containing protein (CTLD) was associated with a faster growth in Pacific abalone. We analyzed this gene and identified an open reading frame that consisted of 145 amino acids. The sequence showed a significant homology to other genes that encode CTLDs in the genus Haliotis. Expression profiling analysis at different developmental stages and from various tissues showed that the gene was first expressed at approximately 50 days after fertilization (shell length of 2.47 ± 0.13 mm). In adult Pacific abalone, the gene was strongly expressed in the epipodium, gill, and mantle. Recombinant Pacific abalone CTLD purified from Escherichia coli exhibited antimicrobial activity against several Gram-positive bacteria (Bacillus subtilis, Streptococcus iniae, and Lactococcus garvieae) and Gram-negative bacteria (Vibrio alginolyticus and Vibrio harveyi). We also performed bacterial agglutination assays in the presence of Ca2+, as well as bacterial binding assays in the presence of the detergent dodecyl maltoside. Incubation with E. coli and B. subtilis cells suggested that the CTLD stimulated Ca2+-dependent bacterial agglutination. Our results suggest that this novel Pacific abalone CTLD is important for the pathogen recognition in the gastropod host defense mechanism.


2020 ◽  
Vol 42 (10) ◽  
pp. 1179-1188
Author(s):  
Mi Ae Kim ◽  
Tae Ha Kim ◽  
Sora Lee ◽  
Bo-Hye Nam ◽  
Jung Sick Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document