scholarly journals Deep Learning-Based Advances in Protein Structure Prediction

2021 ◽  
Vol 22 (11) ◽  
pp. 5553
Author(s):  
Subash C Pakhrin ◽  
Bikash Shrestha ◽  
Badri Adhikari ◽  
Dukka B KC

Obtaining an accurate description of protein structure is a fundamental step toward understanding the underpinning of biology. Although recent advances in experimental approaches have greatly enhanced our capabilities to experimentally determine protein structures, the gap between the number of protein sequences and known protein structures is ever increasing. Computational protein structure prediction is one of the ways to fill this gap. Recently, the protein structure prediction field has witnessed a lot of advances due to Deep Learning (DL)-based approaches as evidenced by the success of AlphaFold2 in the most recent Critical Assessment of protein Structure Prediction (CASP14). In this article, we highlight important milestones and progresses in the field of protein structure prediction due to DL-based methods as observed in CASP experiments. We describe advances in various steps of protein structure prediction pipeline viz. protein contact map prediction, protein distogram prediction, protein real-valued distance prediction, and Quality Assessment/refinement. We also highlight some end-to-end DL-based approaches for protein structure prediction approaches. Additionally, as there have been some recent DL-based advances in protein structure determination using Cryo-Electron (Cryo-EM) microscopy based, we also highlight some of the important progress in the field. Finally, we provide an outlook and possible future research directions for DL-based approaches in the protein structure prediction arena.

2019 ◽  
Author(s):  
◽  
Jie Hou

Protein structure prediction is one of the most important scientific problems in the field of bioinformatics and computational biology. The availability of protein three-dimensional (3D) structure is crucial for studying biological and cellular functions of proteins. The importance of four major sub-problems in protein structure prediction have been clearly recognized. Those include, first, protein secondary structure prediction, second, protein fold recognition, third, protein quality assessment, and fourth, multi-domain assembly. In recent years, deep learning techniques have proved to be a highly effective machine learning method, which has brought revolutionary advances in computer vision, speech recognition and bioinformatics. In this dissertation, five contributions are described. First, DNSS2, a method for protein secondary structure prediction using one-dimensional deep convolution network. Second, DeepSF, a method of applying deep convolutional network to classify protein sequence into one of thousands known folds. Third, CNNQA and DeepRank, two deep neural network approaches to systematically evaluate the quality of predicted protein structures and select the most accurate model as the final protein structure prediction. Fourth, MULTICOM, a protein structure prediction system empowered by deep learning and protein contact prediction. Finally, SAXSDOM, a data-assisted method for protein domain assembly using small-angle X-ray scattering data. All the methods are available as software tools or web servers which are freely available to the scientific community.


2020 ◽  
Author(s):  
Badri Adhikari

AbstractAs deep learning algorithms drive the progress in protein structure prediction, a lot remains to be studied at this emerging crossway of deep learning and protein structure prediction. Recent findings show that inter-residue distance prediction, a more granular version of the well-known contact prediction problem, is a key to predict accurate models. We believe that deep learning methods that predict these distances are still at infancy. To advance these methods and develop other novel methods, we need a small and representative dataset packaged for fast development and testing. In this work, we introduce Protein Distance Net (PDNET), a dataset derived from the widely used DeepCov dataset and consists of 3456 representative protein chains for training and validation. It is packaged with all the scripts that were used to curate the dataset, generate the input features and distance maps, and scripts with deep learning models to train, validate and test. Deep learning models can also be trained and tested in a web browser using free platforms such as Google Colab. We discuss how this dataset can be used to predict contacts, distance intervals, and real-valued distances (in Å) by designing regression models. All scripts, training data, deep learning code for training, validation, and testing, and Python notebooks are available at https://github.com/ba-lab/pdnet/.


2021 ◽  
Author(s):  
Zhiye Guo ◽  
Tianqi Wu ◽  
Jian Liu ◽  
Jie Hou ◽  
Jianlin Cheng

AbstractAccurate prediction of residue-residue distances is important for protein structure prediction. We developed several protein distance predictors based on a deep learning distance prediction method and blindly tested them in the 14th Critical Assessment of Protein Structure Prediction (CASP14). The prediction method uses deep residual neural networks with the channel-wise attention mechanism to classify the distance between every two residues into multiple distance intervals. The input features for the deep learning method include co-evolutionary features as well as other sequence-based features derived from multiple sequence alignments (MSAs). Three alignment methods are used with multiple protein sequence/profile databases to generate MSAs for input feature generation. Based on different configurations and training strategies of the deep learning method, five MULTICOM distance predictors were created to participate in the CASP14 experiment. Benchmarked on 37 hard CASP14 domains, the best performing MULTICOM predictor is ranked 5th out of 30 automated CASP14 distance prediction servers in terms of precision of top L/5 long-range contact predictions (i.e. classifying distances between two residues into two categories: in contact (< 8 Angstrom) and not in contact otherwise) and performs better than the best CASP13 distance prediction method. The best performing MULTICOM predictor is also ranked 6th among automated server predictors in classifying inter-residue distances into 10 distance intervals defined by CASP14 according to the F1 measure. The results show that the quality and depth of MSAs depend on alignment methods and sequence databases and have a significant impact on the accuracy of distance prediction. Using larger training datasets and multiple complementary features improves prediction accuracy. However, the number of effective sequences in MSAs is only a weak indicator of the quality of MSAs and the accuracy of predicted distance maps. In contrast, there is a strong correlation between the accuracy of contact/distance predictions and the average probability of the predicted contacts, which can therefore be more effectively used to estimate the confidence of distance predictions and select predicted distance maps.


2021 ◽  
Vol 22 (11) ◽  
pp. 6032
Author(s):  
Donghyuk Suh ◽  
Jai Woo Lee ◽  
Sun Choi ◽  
Yoonji Lee

The new advances in deep learning methods have influenced many aspects of scientific research, including the study of the protein system. The prediction of proteins’ 3D structural components is now heavily dependent on machine learning techniques that interpret how protein sequences and their homology govern the inter-residue contacts and structural organization. Especially, methods employing deep neural networks have had a significant impact on recent CASP13 and CASP14 competition. Here, we explore the recent applications of deep learning methods in the protein structure prediction area. We also look at the potential opportunities for deep learning methods to identify unknown protein structures and functions to be discovered and help guide drug–target interactions. Although significant problems still need to be addressed, we expect these techniques in the near future to play crucial roles in protein structural bioinformatics as well as in drug discovery.


Author(s):  
Nazim Bouatta ◽  
Peter Sorger ◽  
Mohammed AlQuraishi

The functions of most proteins result from their 3D structures, but determining their structures experimentally remains a challenge, despite steady advances in crystallography, NMR and single-particle cryoEM. Computationally predicting the structure of a protein from its primary sequence has long been a grand challenge in bioinformatics, intimately connected with understanding protein chemistry and dynamics. Recent advances in deep learning, combined with the availability of genomic data for inferring co-evolutionary patterns, provide a new approach to protein structure prediction that is complementary to longstanding physics-based approaches. The outstanding performance of AlphaFold2 in the recent Critical Assessment of protein Structure Prediction (CASP14) experiment demonstrates the remarkable power of deep learning in structure prediction. In this perspective, we focus on the key features of AlphaFold2, including its use of (i) attention mechanisms and Transformers to capture long-range dependencies, (ii) symmetry principles to facilitate reasoning over protein structures in three dimensions and (iii) end-to-end differentiability as a unifying framework for learning from protein data. The rules of protein folding are ultimately encoded in the physical principles that underpin it; to conclude, the implications of having a powerful computational model for structure prediction that does not explicitly rely on those principles are discussed.


2019 ◽  
Author(s):  
Jie Hou ◽  
Tianqi Wu ◽  
Renzhi Cao ◽  
Jianlin Cheng

AbstractPrediction of residue-residue distance relationships (e.g. contacts) has become the key direction to advance protein tertiary structure prediction since 2014 CASP11 experiment, while deep learning has revolutionized the technology for contact and distance distribution prediction since its debut in 2012 CASP10 experiment. During 2018 CASP13 experiment, we enhanced our MULTICOM protein structure prediction system with three major components: contact distance prediction based on deep convolutional neural networks, contact distance-driven template-free (ab initio) modeling, and protein model ranking empowered by deep learning and contact prediction, in addition to an update of other components such as template library, sequence database, and alignment tools. Our experiment demonstrates that contact distance prediction and deep learning methods are the key reasons that MULTICOM was ranked 3rd out of all 98 predictors in both template-free and template-based protein structure modeling in CASP13. Deep convolutional neural network can utilize global information in pairwise residue-residue features such as co-evolution scores to substantially improve inter-residue contact distance prediction, which played a decisive role in correctly folding some free modeling and hard template-based modeling targets from scratch. Deep learning also successfully integrated 1D structural features, 2D contact information, and 3D structural quality scores to improve protein model quality assessment, where the contact prediction was demonstrated to consistently enhance ranking of protein models for the first time. The success of MULTICOM system in the CASP13 experiment clearly shows that protein contact distance prediction and model selection driven by powerful deep learning holds the key of solving protein structure prediction problem. However, there are still major challenges in accurately predicting protein contact distance when there are few homologous sequences to generate co-evolutionary signals, folding proteins from noisy contact distances, and ranking models of hard targets.


1970 ◽  
Vol 19 (2) ◽  
pp. 217-226
Author(s):  
S. M. Minhaz Ud-Dean ◽  
Mahdi Muhammad Moosa

Protein structure prediction and evaluation is one of the major fields of computational biology. Estimation of dihedral angle can provide information about the acceptability of both theoretically predicted and experimentally determined structures. Here we report on the sequence specific dihedral angle distribution of high resolution protein structures available in PDB and have developed Sasichandran, a tool for sequence specific dihedral angle prediction and structure evaluation. This tool will allow evaluation of a protein structure in pdb format from the sequence specific distribution of Ramachandran angles. Additionally, it will allow retrieval of the most probable Ramachandran angles for a given sequence along with the sequence specific data. Key words: Torsion angle, φ-ψ distribution, sequence specific ramachandran plot, Ramasekharan, protein structure appraisal D.O.I. 10.3329/ptcb.v19i2.5439 Plant Tissue Cult. & Biotech. 19(2): 217-226, 2009 (December)


Sign in / Sign up

Export Citation Format

Share Document