unknown protein
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 49)

H-INDEX

22
(FIVE YEARS 3)

Author(s):  
Yujie Xiao ◽  
Qingyuan Liang ◽  
Meina He ◽  
Nianqi Wu ◽  
Liang Nie ◽  
...  

Exopolysaccharides (EPSs) Pea is essential for wrinkly colony morphology, pellicle formation, and robust biofilm production in Pseudomonas putida . The second messenger cyclic diguanylate monophosphate (c-di-GMP) induces wrinkly colony morphology in P. putida through unknown mechanism(s). Herein, we found that c-di-GMP modulated wrinkly colony morphology via regulating expression of eppA ( PP_5586 ), a small individually transcribed gene with 177 base pairs, and this gene was adjacent to the upstream of pea cluster. Phenotype observation revealed that eppA was essential for Pea-dependent phenotypes. The deletion of eppA led to smooth colony morphology and impaired biofilm, which was analogous to the phenotypes with the loss of the entire pea operon. EppA expression was positively regulated by c-di-GMP via the transcriptional effector FleQ, and eppA was essential for the c-di-GMP-induced wrinkly colony morphology. Structure prediction results implied that EppA had two transmembrane regions, and Western blot revealed that EppA was located on cell membrane. Transcriptomic analysis indicated that EppA had no significant effect on transcriptomic profile of P. putida . Bacterial two-hybrid (BTH) assay suggested that there was no direct interaction between EppA and the proteins in pea cluster and adjacent operons. Overall, these findings reveal that EppA is essential for Pea-dependent phenotypes, and that c-di-GMP modulates Pea-dependent phenotypes via regulating eppA expression in P. putida . IMPORTANCE Microbe-secreted EPSs are high molecular weight polysaccharides that have the potential to be used as industrially important biomaterials. The EPS Pea in P. putida is essential for wrinkly colony morphology and pellicle formation. Here, we identified a function-unknown protein EppA, which was also essential for Pea-dependent wrinkly colony morphology and pellicle formation, and EppA was probably involved in Pea secretion. Meanwhile, our results indicated that the second messenger c-di-GMP positively regulated the expression of EppA, resulting in Pea-dependent wrinkly colony morphology. Our results reveal the relationship of c-di-GMP, EppA, and Pea-dependent phenotypes, and provide possible pathway to construct genetically engineered strain for high Pea production.


mBio ◽  
2021 ◽  
Author(s):  
Giovanni Gallo ◽  
Ioannis Mougiakos ◽  
Mauricio Bianco ◽  
Miriam Carbonaro ◽  
Andrea Carpentieri ◽  
...  

We here describe the discovery of an unknown protein by using a proteomic approach with a functionally related protein as bait. Remarkably, we successfully obtained a novel type of enzyme through the interaction with a transcription regulator controlling the expression of this enzyme.


IUCrJ ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Grzegorz Chojnowski ◽  
Adam J. Simpkin ◽  
Diego A. Leonardo ◽  
Wolfram Seifert-Davila ◽  
Dan E. Vivas-Ruiz ◽  
...  

Although experimental protein-structure determination usually targets known proteins, chains of unknown sequence are often encountered. They can be purified from natural sources, appear as an unexpected fragment of a well characterized protein or appear as a contaminant. Regardless of the source of the problem, the unknown protein always requires characterization. Here, an automated pipeline is presented for the identification of protein sequences from cryo-EM reconstructions and crystallographic data. The method's application to characterize the crystal structure of an unknown protein purified from a snake venom is presented. It is also shown that the approach can be successfully applied to the identification of protein sequences and validation of sequence assignments in cryo-EM protein structures.


Author(s):  
Brandon A Kemp ◽  
Nancy L Howell ◽  
John J Gildea ◽  
Susanna R Keller ◽  
David L Brautigan ◽  
...  

Background: How signals from activated angiotensin type-2 receptors (AT 2 R) mediate inhibition of sodium ion (Na+) reabsorption in renal proximal tubule cells (RPTCs) is currently unknown. Protein phosphatases including protein phosphatase 2A (PP2A) have been implicated in AT2R signaling in tissues other than kidney. We investigated whether inhibition of protein phosphatase PP2A reduced AT 2 R-mediated natriuresis and evaluated changes in PP2A activity and localization after renal AT 2 R activation in normal 4- and 10-week-old control Wistar-Kyoto rats (WKY) and 4-week-old pre-hypertensive and 10-week-old hypertensive spontaneously hypertensive rats (SHR). Methods and Results: In WKY, direct renal interstitial (RI) administration of selective AT 2 R non-peptide agonist Compound-21 (C-21) increased RI cyclic GMP (cGMP) levels, urine Na + excretion (U Na V), and simultaneously increased PP2A activity ≅ 2-fold in homogenates of renal cortical tubules. The cGMP and natriuretic responses were abolished by concurrent RI administration of protein phosphatase inhibitor calyculin A (CAL). In RPTCs in response to C-21, PP2A subunits A, B55α and C, but not B56γ, were recruited to apical plasma membranes together with AT 2 Rs. CAL treatment abolished C-21-induced translocation of both AT 2 R and PP2A regulatory subunit B55α to apical plasma membranes. Immunoprecipitation of AT 2 R solubilized from renal cortical homogenates demonstrated physical association of AT 2 R with PP2A A, B55α, and C but not B56γ subunits. In contrast, in SHR, administration of C-21 did not alter UNaV or PP2A activity and failed to translocate AT 2 Rs and PP2A subunits to apical plasma membranes. Conclusions: In RPTCs of WKY, PP2A is activated and PP2A subunits AB55αC are recruited to C-21-activated AT 2 Rs during induction of natriuresis. This response is defective in pre-hypertensive and hypertensive SHR, presenting a potential novel therapeutic target for treating renal Na+ retention and hypertension.


Microbiology ◽  
2021 ◽  
Vol 167 (10) ◽  
Author(s):  
Alan F. Scott ◽  
Evelyne Deery ◽  
Andrew D. Lawrence ◽  
Martin J. Warren

Uroporphyrinogen III, the universal progenitor of macrocyclic, modified tetrapyrroles, is produced from aminolaevulinic acid (ALA) by a conserved pathway involving three enzymes: porphobilinogen synthase (PBGS), hydroxymethylbilane synthase (HmbS) and uroporphyrinogen III synthase (UroS). The gene encoding uroporphyrinogen III synthase has not yet been identified in Plasmodium falciparum, but it has been suggested that this activity is housed inside a bifunctional hybroxymethylbilane synthase (HmbS). Additionally, an unknown protein encoded by PF3D7_1247600 has also been predicted to possess UroS activity. In this study it is demonstrated that neither of these proteins possess UroS activity and the real UroS remains to be identified. This was demonstrated by the failure of codon-optimized genes to complement a defined Escherichia coli hemD − mutant (SASZ31) deficient in UroS activity. Furthermore, HPLC analysis of the oxidized reaction product from recombinant, purified P. falciparum HmbS showed that only uroporphyrin I could be detected (corresponding to hydroxymethylbilane production). No uroporphyrin III was detected, showing that P. falciparum HmbS does not have UroS activity and can only catalyze the formation of hydroxymethylbilane from porphobilinogen.


Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1565
Author(s):  
Hajnal A. Kovács ◽  
Enikő Lázár ◽  
György Várady ◽  
Gábor Sirokmány ◽  
Miklós Geiszt

Peroxidasin (PXDN) and peroxidasin-like protein (PXDNL) are members of the peroxidase-cyclooxygenase superfamily. PXDN functions in basement membrane synthesis by forming collagen IV crosslinks, while the function of PXDNL remains practically unknown. In this work, we characterized the post-translational proteolytic processing of PXDN and PXDNL. Using a novel knock-in mouse model, we demonstrate that the proteolytic cleavage of PXDN occurs in vivo. With the help of furin-specific siRNA we also demonstrate that the proprotein-convertase, furin participates in the proteolytic processing of PXDN. Furthermore, we demonstrate that only the proteolytically processed PXDN integrates into the extracellular matrix, highlighting the importance of the proteolysis step in PXDN’s collagen IV-crosslinking activity. We also provide multiple lines of evidence for the importance of peroxidase activity in the proteolytic processing of PXDN. Finally, we show that PXDNL does not undergo proteolytic processing, despite containing sequence elements efficiently recognized by proprotein convertases. Collectively, our observations suggest a previously unknown protein quality control during PXDN synthesis and the importance of the peroxidase activity of PXDN in this process.


Author(s):  
GeZi GeZi ◽  
Rui Liu ◽  
Dongdong Du ◽  
Nier Wu ◽  
Narisu Bao ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tuomas Kaprio ◽  
Alexander M. Lindström ◽  
Tiina Rasila ◽  
Olga Saavalainen ◽  
Ines Beilmann-Lehtonen ◽  
...  

Abstract Background Colon cancer (CC) is one of the most commonly diagnosed malignancies worldwide. Several biomarkers have been suggested for improved prognostic evaluation, but few have been implemented in clinical practice. There is a need for biomarkers that predict the tumor behavior in CC and allow stratification of patients that would benefit from adjuvant therapy. We recently identified and functionally characterized a previously unknown protein that we called ASTROPRINCIN (APCN) due to its abundance in astrocytes. APCN, also annotated as FAM171A1, is found in trophoblasts of early placenta. We demonstrated that high expression levels of APCN in cancer cells induced motility and ability of invasive growth in semisolid medium. Methods We screened by immunohistochemistry a tissue microarray material from the tumors of 429 CC patients with clinical follow-up in a test series and 255 CC patients in a validation series. Results We showed that low or absent APCN expression correlates with a favorable prognosis while high APCN expression was a sign of an adverse outcome. Cox uni- and multivariable analysis revealed that elevated tumor expression of APCN constitutes a robust marker of poor prognosis independent of stage, grade, patient’s age, or gender. Conclusion Our findings demonstrate that APCN is a novel independent prognostic marker in CC and could potentially select patients for more intense postoperative adjuvant treatment and follow-up.


Sign in / Sign up

Export Citation Format

Share Document