scholarly journals Biocatalyzed Synthesis of Flavor Esters and Polyesters: A Design of Experiments (DoE) Approach

2021 ◽  
Vol 22 (16) ◽  
pp. 8493
Author(s):  
Filippo Fabbri ◽  
Federico A. Bertolini ◽  
Georg M. Guebitz ◽  
Alessandro Pellis

In the present work, different hydrolases were adsorbed onto polypropylene beads to investigate their activity both in short-esters and polyesters synthesis. The software MODDE® Pro 13 (Sartorius) was used to develop a full-factorial design of experiments (DoE) to analyse the thermostability and selectivity of the immobilized enzyme towards alcohols and acids with different chain lengths in short-esters synthesis reactions. The temperature optima of Candida antarctica lipase B (CaLB), Humicola insolens cutinase (HiC), and Thermobifida cellulosilytica cutinase 1 (Thc_Cut1) were 85 °C, 70 °C, and 50 °C. CaLB and HiC preferred long-chain alcohols and acids as substrate in contrast to Thc_Cut1, which was more active on short-chain monomers. Polymerization of different esters as building blocks was carried out to confirm the applicability of the obtained model on larger macromolecules. The selectivity of both CaLB and HiC was investigated and best results were obtained for dimethyl sebacate (DMSe), leading to polyesters with a Mw of 18 kDa and 6 kDa. For the polymerization of dimethyl adipate (DMA) with BDO and ODO, higher molecular masses were obtained when using CaLB onto polypropylene beads (CaLB_PP) as compared with CaLB immobilized on macroporous acrylic resin beads (i.e., Novozym 435). Namely, for BDO the Mn were 7500 and 4300 Da and for ODO 8100 and 5000 Da for CaLB_PP and for the commercial enzymes, respectively. Thc_Cut1 led to polymers with lower molecular masses, with Mn < 1 kDa. This enzyme showed a temperature optimum of 50 °C with 63% of DMA and BDO when compared to 54% and 27%, at 70 °C and at 85 °C, respectively.

2020 ◽  
Author(s):  
A. Saravanakumar ◽  
L. Rajeshkumar ◽  
N. S. Sanjay kumar ◽  
R. Sivakumar ◽  
S. Sriramthilak ◽  
...  

Author(s):  
Jayesh S ◽  
Jacob Elias ◽  
Manoj Guru

Inherent toxicity makes lead a banned material in solder alloy making process. Lead-tin alloy was a favorable alloy used for soldering in electronic packaging manufacturers. As a result of the ban on lead, electronics package industries were looking for novel lead free alloys which can substitute the conventional Sn-Pb alloy. Many alloys were discovered by the scientists. None of them were able to substitute the Sn-Pb alloy and become the market leader. In this paper a new composition with Sn, Cu and Ni is made to analyze which can potentially replace the lead containing solder alloy. Using the design of experiments method, the optimized composition of Cu and Ni is predicted. The full factorial design of experiments with two replications is used to find the optimized composition. Melting temperature, contact angle and hardness were taken as the critical output parameters. Results obtained shows that the optimum composition of Cu and Ni are 1 and 1% by wt.


Sign in / Sign up

Export Citation Format

Share Document