scholarly journals Factorial design and design of experiments for developing novel lead free solder alloy with Sn, Cu and Ni

Author(s):  
Jayesh S ◽  
Jacob Elias ◽  
Manoj Guru

Inherent toxicity makes lead a banned material in solder alloy making process. Lead-tin alloy was a favorable alloy used for soldering in electronic packaging manufacturers. As a result of the ban on lead, electronics package industries were looking for novel lead free alloys which can substitute the conventional Sn-Pb alloy. Many alloys were discovered by the scientists. None of them were able to substitute the Sn-Pb alloy and become the market leader. In this paper a new composition with Sn, Cu and Ni is made to analyze which can potentially replace the lead containing solder alloy. Using the design of experiments method, the optimized composition of Cu and Ni is predicted. The full factorial design of experiments with two replications is used to find the optimized composition. Melting temperature, contact angle and hardness were taken as the critical output parameters. Results obtained shows that the optimum composition of Cu and Ni are 1 and 1% by wt.

2021 ◽  
Author(s):  
M. N. Ervina Efzan ◽  
M. M. Nur Haslinda ◽  
M. M. Al Bakri Abdullah

2020 ◽  
Vol 43 (12) ◽  
pp. 2883-2891
Author(s):  
Q.B. Tao ◽  
L. Benabou ◽  
Van Nhat Le ◽  
Ngoc Anh Thi Nguyen ◽  
Hung Nguyen‐Xuan

2019 ◽  
Vol 6 (12) ◽  
pp. 126562 ◽  
Author(s):  
Clarissa B da Cruz ◽  
Thiago S Lima ◽  
Thiago A Costa ◽  
Crystopher Brito ◽  
Amauri Garcia ◽  
...  

2017 ◽  
Vol 751 ◽  
pp. 9-13
Author(s):  
Kogaew Inkong ◽  
Phairote Sungkhaphaitoon

The effect of cooling rate on the microstructural and mechanical properties of Sn-0.3Ag-0.7Cu-0.05Ni lead-free solder alloy was studied. The microstructure of specimens was characterized by using an optical microscope (OM) and an energy dispersive X-ray spectroscopy (EDX). The mechanical properties were performed by using a universal testing machine (UTM). The results showed that the cooling rate of water-cooled specimens was about 2.37 °C/s and the cooling rate of mold-cooled specimens was about 0.05 °C/s. To compare the different cooling rates, it was found that the grain size of water-cooled specimens was finer than that of the mold-cooled specimens, this resulted in an increment of mechanical properties of solder alloy. A higher tensile strength (33.10 MPa) and a higher elongation (34%) were observed when water-cooled and mold-cooled systems were used, respectively. The microstructure of Sn-0.3Ag-0.7Cu-0.05Ni lead-free solder alloy solidified by both cooling systems exhibited three phases: β-Sn, Ag3Sn and (Cu,Ni)6Sn5 IMCs.


2005 ◽  
Vol 160 (7) ◽  
pp. 301-312 ◽  
Author(s):  
Mustafa Kamal ◽  
M. S. Meikhail ◽  
Abu Bakr El-Bediwi ◽  
El-Said Gouda

Sign in / Sign up

Export Citation Format

Share Document