scholarly journals Correlated Dynamics in Ionic Liquids by Means of NMR Relaxometry: Butyltriethylammonium bis(Trifluoromethanesulfonyl)imide as an Example

2021 ◽  
Vol 22 (17) ◽  
pp. 9117
Author(s):  
Danuta Kruk ◽  
Elzbieta Masiewicz ◽  
Sylwia Lotarska ◽  
Roksana Markiewicz ◽  
Stefan Jurga

1H and 19F spin-lattice relaxation experiments have been performed for butyltriethylammonium bis(trifluoromethanesulfonyl)imide in the temperature range from 258 to 298 K and the frequency range from 10 kHz to 10 MHz. The results have thoroughly been analysed in terms of a relaxation model taking into account relaxation pathways associated with 1H–1H, 19F–19F and 1H–19F dipole–dipole interactions, rendering relative translational diffusion coefficients for the pairs of ions: cation–cation, anion–anion and cation–anion, as well as the rotational correlation time of the cation. The relevance of the 1H–19F relaxation contribution to the 1H and 19F relaxation has been demonstrated. A comparison of the diffusion coefficients has revealed correlation effects in the relative cation–anion translational movement. It has also turned out that the translational movement of the anions is faster than of cations, especially at high temperatures. Moreover, the relative cation–cation diffusion coefficients have been compared with self-diffusion coefficients obtained by means of NMR (Nuclear Magnetic Resonance) gradient diffusometry. The comparison indicates correlation effects in the relative cation–cation translational dynamics—the effects become more pronounced with decreasing temperature.

1996 ◽  
Vol 51 (5-6) ◽  
pp. 761-768 ◽  
Author(s):  
H. Honda ◽  
M. Kenmotsu ◽  
N. Onoda-Yamamuro ◽  
H. Ohki ◽  
S. Ishimaru ◽  
...  

The temperature dependence of the 15N and 133Cs NMR spin-lattice relaxation times, the 15N spin-spin relaxation time, and the 15N and 133Cs spectra of CsNO2 was observed in the plastic phase (209.2 < T < 673 K (m. p.)) and the low-temperature phase (Phase II). In Phase II we found the NO-2 180°-flip, which could be attributed to the anomalous increase of the heat capacity curve, and determined the activation energy of this motion to be 8.7-11.7 kJ mol-1. The 15N and 133Cs spectra in this phase are inconsistent with the reported crystal structure R3̅m and can be explained by lower crystal symmetry. In the plastic phase we detected a new anionic motion with 11 kJ mol-1 , an isotropic NO-2 reorientation with 8.5-9 kJ mol-1, and ionic self-diffusion with 47 kJ mol-1. The presence of ionic self-diffusion was confirmed by measuring the electrical conductivity.


2000 ◽  
Vol 44 (2) ◽  
pp. 292-300 ◽  
Author(s):  
Robert V. Mulkern ◽  
Hale Pinar Zengingonul ◽  
Richard L. Robertson ◽  
Peter Bogner ◽  
Kelly H. Zou ◽  
...  

2000 ◽  
Vol 55 (3-4) ◽  
pp. 412-414 ◽  
Author(s):  
Hiroyuki Ishida

Abstract The reorientation of the tetrahedral complex anion ZnCl42- and the self-diffusion of the cation in (CH3NH3)2ZnCl4 were studied by 1H NMR spin-lattice relaxation time (1H T1) experiments. In the second highest-temperature phase, the temperature dependence of 1H T1 observed at 8.5 MHz could be explained by a magnetic dipolar-electric quadrupolar cross relaxation between 1H and chlorine nuclei, and the activation energy of the anion motion was determined to be 105 kJ mol -1 . In the highest-temperature phase, the activation energy of the self-diffusion of the cation was determined to be 58 kJ mol -1 from the temperature and frequency dependence of 1H T1


Physica B+C ◽  
1978 ◽  
Vol 95 (2) ◽  
pp. 173-182 ◽  
Author(s):  
G.J. Gerritsma ◽  
J. Flokstra ◽  
G.A. Hartemink ◽  
J.J.M. Scholten ◽  
A.J.W.A. Vermeulen ◽  
...  

2010 ◽  
Vol 495 (4-6) ◽  
pp. 287-291 ◽  
Author(s):  
Emilie Steiner ◽  
Mehdi Yemloul ◽  
Laouès Guendouz ◽  
Sébastien Leclerc ◽  
Anthony Robert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document