scholarly journals Carbenoxolon Is Capable to Regulate the Mitochondrial Permeability Transition Pore Opening in Chronic Alcohol Intoxication

2021 ◽  
Vol 22 (19) ◽  
pp. 10249
Author(s):  
Yulia Baburina ◽  
Irina Odinokova ◽  
Olga Krestinina

Background: carbenoxolone, which is a derivative of glyceretic acid, is actively used in pharmacology for the treatment of diseases of various etiologies. In addition, we have shown carbenoxolone as an effective inducer of mitochondrial permeability transition pore in rat brain and liver mitochondria. Methods: in the course of this work, comparative studies were carried out on the effect of carbenoxolone on the parameters of mPTP functioning in mitochondria isolated from the liver of control and alcoholic rats. Results: within the framework of this work, it was found that carbenoxolone significantly increased its effect in the liver mitochondria of rats with chronic intoxication. In particular, this was expressed in a reduction in the lag phase, a decrease in the threshold calcium concentration required to open a pore, an acceleration of high-amplitude cyclosporin-sensitive swelling of mitochondria, as well as an increase in the effect of carbenoxolone on the level of mitochondrial membrane-bound proteins. Thus, as a result of the studies carried out, it was shown that carbenoxolone is involved in the development/modulation of alcohol tolerance and dependence in rats.

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Elena A. Belyaeva ◽  
Larisa V. Emelyanova ◽  
Sergey M. Korotkov ◽  
Irina V. Brailovskaya ◽  
Margarita V. Savina

Previously we have shown that opening of the mitochondrial permeability transition pore in its low conductance state is the case in hepatocytes of the Baltic lamprey (Lampetra fluviatilis L.) during reversible metabolic depression taking place in the period of its prespawning migration when the exogenous feeding is switched off. The depression is observed in the last year of the lamprey life cycle and is conditioned by reversible mitochondrial dysfunction (mitochondrial uncoupling in winter and coupling in spring). To further elucidate the mechanism(s) of induction of the mitochondrial permeability transition pore in the lamprey liver, we used Cd2+and Ca2+plus Pias the pore inducers. We found that Ca2+plus Piinduced the high-amplitude swelling of the isolated “winter” mitochondria both in isotonic sucrose and ammonium nitrate medium while both low and high Cd2+did not produce the mitochondrial swelling in these media. Low Cd2+enhanced the inhibition of basal respiration rate of the “winter” mitochondria energized by NAD-dependent substrates whereas the same concentrations of the heavy metal evoked its partial stimulation on FAD-dependent substrates. The above changes produced by Cd2+or Ca2+plus Piin the “winter” mitochondria were only weakly (if so) sensitive to cyclosporine A (a potent pharmacological desensitizer of the nonselective pore) added alone and they were not sensitive to dithiothreitol (a dithiol reducing agent). Under monitoring of the transmembrane potential of the “spring” lamprey liver mitochondria, we revealed that Cd2+produced its decrease on both types of the respiratory substrates used that was strongly hampered by cyclosporine A, and the membrane potential was partially restored by dithiothreitol. The effects of different membrane permeability modulators on the lamprey liver mitochondria function and the seasonal changes in their action are discussed.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1774
Author(s):  
Yulia Baburina ◽  
Irina Odinokova ◽  
Olga Krestinina

Decades of active research have shown that mitochondrial dysfunction, the associated oxidative stress, impaired anti-stress defense mechanisms, and the activation of the proapoptotic signaling pathways underlie pathological changes in organs and tissues. Pathologies caused by alcohol primarily affect the liver. Alcohol abuse is the cause of many liver diseases, such as steatosis, alcoholic steatohepatitis, fibrosis, cirrhosis, and, potentially, hepatocellular cancer. In this study, the effect of chronic alcohol exposure on rat liver mitochondria was investigated. We observed an ethanol-induced increase in sensitivity to calcium, changes in the level of protein kinase Akt and GSK-3β phosphorylation, an induction of the mitochondrial permeability transition pore (mPTP), and strong alterations in the expression of mPTP regulators. Moreover, we also showed an enhanced effect of PK11195 and PPIX, on the parameters of the mPTP opening in rat liver mitochondria (RLM) isolated from ethanol-treated rats compared to the RLM from control rats. We suggest that the results of this study could help elucidate the mechanisms of chronic ethanol action on the mitochondria and contribute to the development of new therapeutic strategies for treating the effects of ethanol-related diseases.


2010 ◽  
Vol 299 (4) ◽  
pp. G954-G966 ◽  
Author(s):  
Adrienne L. King ◽  
Telisha M. Swain ◽  
Dale A. Dickinson ◽  
Mathieu J. Lesort ◽  
Shannon M. Bailey

Chronic ethanol consumption increases mitochondrial oxidative stress and sensitivity to form the mitochondrial permeability transition pore (MPTP). The mechanism responsible for increased MPTP sensitivity in ethanol-exposed mitochondria and its relation to mitochondrial Ca2+ handling is unknown. Herein, we investigated whether increased sensitivity to MPTP induction in liver mitochondria from ethanol-fed rats compared with controls is related to an ethanol-dependent change in mitochondrial Ca2+ accumulation. Liver mitochondria were isolated from control and ethanol-fed rats, and Ca2+-mediated induction of the MPTP and mitochondrial Ca2+ retention capacity were measured. Levels of proposed MPTP proteins as well as select pro- and antiapoptotic proteins were measured along with gene expression. We observed increased steatosis and TUNEL-stained nuclei in liver of ethanol-fed rats compared with controls. Liver mitochondria from ethanol-fed rats had increased levels of proapoptotic Bax protein and reduced Ca2+ retention capacity compared with control mitochondria. We observed increased cyclophilin D (Cyp D) gene expression in liver and protein in mitochondria from ethanol-fed animals compared with controls, whereas there was no change in the adenine nucleotide translocase and voltage-dependent anion channel. Together, these results suggest that enhanced sensitivity to Ca2+-mediated MPTP induction may be due, in part, to higher Cyp D levels in liver mitochondria from ethanol-fed rats. Therefore, therapeutic strategies aimed at normalizing Cyp D levels may be beneficial in preventing ethanol-dependent mitochondrial dysfunction and liver injury.


2018 ◽  
Author(s):  
Jason Karch ◽  
Michael J. Bround ◽  
Hadi Khalil ◽  
Michelle A. Sargent ◽  
Nadina Latchman ◽  
...  

AbstractThe mitochondrial permeability transition pore (MPTP) has resisted molecular identification for decades. The original model of the MPTP had the adenine nucleotide translocator (ANT) as the inner membrane pore-forming component. Indeed, reconstitution experiments showed that recombinant or purified ANT generates MPTP-like pores in lipid bilayers. This model was challenged when mitochondria from Ant1/2 double null mouse liver still showed MPTP activity. Because mice contain and express 3 Ant genes, here we reinvestigated the genetic basis for the ANTs as comprising the MPTP. Liver mitochondria from Ant1, Ant2, and Ant4 deficient mice were highly refractory to Ca2+-induced MPT, and when also given cyclosporine A, MPT was completely inhibited. Moreover, liver mitochondria from mice with quadruple deletion of Ant1, Ant2, Ant4 and Ppif (cyclophilin D, target of CsA) lacked Ca2+-induced MPT. Finally, inner membrane patch clamping in mitochondria from Ant1, Ant2 and Ant4 triple null mouse embryonic fibroblasts (MEFs) showed a loss of MPT-like pores. Our findings suggest a new model of MPT consisting of two distinct molecular components, one of which is the ANTs and the other of which is unknown but requires CypD.One Sentence SummaryGenetic deletion of Ant1/2/4 and Ppif in mice fully inhibits the mitochondrial permeability transition pore


Sign in / Sign up

Export Citation Format

Share Document