scholarly journals Semi-Continuous Desalination and Concentration of Small-Volume Samples

2021 ◽  
Vol 22 (23) ◽  
pp. 12904
Author(s):  
David Tichý ◽  
Zdeněk Slouka

Electrodialysis is an electric-field-mediated process separating ions exploiting selective properties of ion-exchange membranes. The ion-exchange membranes create an ion-depleted zone in an electrolyte solution adjacent to the membrane under DC polarization. We constructed a microfluidic system that uses the ion-depleted zone to separate ions from the processed water solution. We tested the separation performance by desalting a model KCl solution spiked with fluorescein for direct observation. We showed both visually and by measuring the conductivity of the output solutions that the system can work in three modes of operation referred to as continuous desalination, desalination by accumulation, and unsuccessful desalination. The mode of operation can easily be set by changing the control parameters. The desalination factors for the model KCl solution reached values from 80 to 100%, depending on the mode of operation. The concentration factor, given as a ratio of concentrate-to-feed concentrations, reached zero for desalination by accumulation when only diluate was produced. The water recovery, therefore, was infinite at these conditions. Independent control of the diluate and concentrate flow rates and the DC voltage turned our system into a versatile platform, enabling us to set proper conditions to process various samples.

2019 ◽  
Vol 577 ◽  
pp. 153-164 ◽  
Author(s):  
Junbin Liao ◽  
Xinyan Yu ◽  
Nengxiu Pan ◽  
Jun Li ◽  
Jiangnan Shen ◽  
...  

1992 ◽  
Vol 57 (9) ◽  
pp. 1905-1914
Author(s):  
Miroslav Bleha ◽  
Věra Šumberová

The equilibrium sorption of uni-univalent electrolytes (NaCl, KCl) in heterogeneous cation exchange membranes with various contents of the ion exchange component and in ion exchange membranes Ralex was investigated. Using experimental data which express the concentration dependence of equilibrium sorption, validity of the Donnan relation for the systems under investigation was tested and values of the Glueckauf inhomogeneity factor for Ralex membranes were determined. Determination of the equilibrium sorption allows the effect of the total content of internal water and of the ion-exchange capacity on the distribution coefficients of the electrolyte to be determined.


Desalination ◽  
2020 ◽  
Vol 482 ◽  
pp. 114384
Author(s):  
Katarzyna Smolinska-Kempisty ◽  
Anna Siekierka ◽  
Marek Bryjak

Chemosphere ◽  
2021 ◽  
pp. 130817
Author(s):  
Shanxue Jiang ◽  
Haishu Sun ◽  
Huijiao Wang ◽  
Bradley P. Ladewig ◽  
Zhiliang Yao

Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 135
Author(s):  
Yash Dharmendra Raka ◽  
Robert Bock ◽  
Håvard Karoliussen ◽  
Øivind Wilhelmsen ◽  
Odne Stokke Burheim

The ohmic resistances of the anion and cation ion-exchange membranes (IEMs) that constitute a reverse electrodialysis system (RED) are of crucial importance for its performance. In this work, we study the influence of concentration (0.1 M, 0.5 M, 1 M and 2 M) of ammonium bicarbonate solutions on the ohmic resistances of ten commercial IEMs. We also studied the ohmic resistance at elevated temperature 313 K. Measurements have been performed with a direct two-electrode electrochemical impedance spectroscopy (EIS) method. As the ohmic resistance of the IEMs depends linearly on the membrane thickness, we measured the impedance for three different layered thicknesses, and the results were normalised. To gauge the role of the membrane resistances in the use of RED for production of hydrogen by use of waste heat, we used a thermodynamic and an economic model to study the impact of the ohmic resistance of the IEMs on hydrogen production rate, waste heat required, thermochemical conversion efficiency and the levelised cost of hydrogen. The highest performance was achieved with a stack made of FAS30 and CSO Type IEMs, producing hydrogen at 8.48× 10−7 kg mmem−2s−1 with a waste heat requirement of 344 kWh kg−1 hydrogen. This yielded an operating efficiency of 9.7% and a levelised cost of 7.80 € kgH2−1.


Sign in / Sign up

Export Citation Format

Share Document