scholarly journals A New Approach to Nonlinear Invariants for Hybrid Systems Based on the Citing Instances Method

Information ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 246
Author(s):  
Honghui He ◽  
Jinzhao Wu

In generating invariants for hybrid systems, a main source of intractability is that transition relations are first-order assertions over current-state variables and next-state variables, which doubles the number of system variables and introduces many more free variables. The more variables, the less tractability and, hence, solving the algebraic constraints on complete inductive conditions by a comprehensive Gröbner basis is very expensive. To address this issue, this paper presents a new, complete method, called the Citing Instances Method (CIM), which can eliminate the free variables and directly solve for the complete inductive conditions. An instance means the verification of a proposition after instantiating free variables to numbers. A lattice array is a key notion in this paper, which is essentially a finite set of instances. Verifying that a proposition holds over a Lattice Array suffices to prove that the proposition holds in general; this interesting feature inspires us to present CIM. On one hand, instead of computing a comprehensive Gröbner basis, CIM uses a Lattice Array to generate the constraints in parallel. On the other hand, we can make a clever use of the parallelism of CIM to start with some constraint equations which can be solved easily, in order to determine some parameters in an early state. These solved parameters benefit the solution of the rest of the constraint equations; this process is similar to the domino effect. Therefore, the constraint-solving tractability of the proposed method is strong. We show that some existing approaches are only special cases of our method. Moreover, it turns out CIM is more efficient than existing approaches under parallel circumstances. Some examples are presented to illustrate the practicality of our method.

10.37236/8565 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Ferenc Szöllősi ◽  
Patric R.J. Östergård

A finite set of vectors $\mathcal{X}$ in the $d$-dimensional Euclidean space $\mathbb{R}^d$ is called an $s$-distance set if the set of mutual distances between distinct elements of $\mathcal{X}$ has cardinality exactly $s$. In this paper we present a combined approach of isomorph-free exhaustive generation of graphs and Gröbner basis computation to classify the largest $3$-distance sets in $\mathbb{R}^4$, the largest $4$-distance sets in $\mathbb{R}^3$, and the largest $6$-distance sets in $\mathbb{R}^2$. We also construct new examples of large $s$-distance sets in $\mathbb{R}^d$ for $d\leq 8$ and $s\leq 6$, and independently verify several earlier results from the literature.


2021 ◽  
Author(s):  
◽  
Amani Ahmed Otaif

<p>The aim of this thesis is to apply the Grünwald–Blaschke kinematic mapping to standard types of parallel general planar three-legged platforms in order to obtain the univariate polynomials which provide the solution of the forward kinematic problem. We rely on the method of Gröbner basis to reach these univariate polynomials. The Gröbner basis is determined from the constraint equations of the three legs of the platforms. The degrees of these polynomials are examined geometrically based on Bezout’s Theorem. The principle conclusion is that the univariate polynomials for the symmetric platforms under circular constraints are of degree six, which describe the maximum number of real solutions. The univariate polynomials for the symmetric platforms under linear constraints are of degree two, that describe the maximum number of real solutions.</p>


2014 ◽  
Vol 213 ◽  
pp. 105-125 ◽  
Author(s):  
Viviana Ene ◽  
Jürgen Herzog ◽  
Takayuki Hibi ◽  
Ayesha Asloob Qureshi

AbstractWe introduce a class of ideals generated by a set of 2-minors of an (m×n)-matrix of indeterminates indexed by a pair of graphs. This class of ideals is a natural common generalization of binomial edge ideals and ideals generated by adjacent minors. We determine the minimal prime ideals of such ideals and give a lower bound for their degree of nilpotency. In some special cases we compute their Gröbner basis and characterize unmixedness and Cohen–Macaulayness.


2013 ◽  
Vol 31 (3) ◽  
pp. 371-392 ◽  
Author(s):  
Thomas Uchida ◽  
Alfonso Callejo ◽  
Javier García de Jalón ◽  
John McPhee

2021 ◽  
Author(s):  
◽  
Amani Ahmed Otaif

<p>The aim of this thesis is to apply the Grünwald–Blaschke kinematic mapping to standard types of parallel general planar three-legged platforms in order to obtain the univariate polynomials which provide the solution of the forward kinematic problem. We rely on the method of Gröbner basis to reach these univariate polynomials. The Gröbner basis is determined from the constraint equations of the three legs of the platforms. The degrees of these polynomials are examined geometrically based on Bezout’s Theorem. The principle conclusion is that the univariate polynomials for the symmetric platforms under circular constraints are of degree six, which describe the maximum number of real solutions. The univariate polynomials for the symmetric platforms under linear constraints are of degree two, that describe the maximum number of real solutions.</p>


2014 ◽  
Vol 213 ◽  
pp. 105-125 ◽  
Author(s):  
Viviana Ene ◽  
Jürgen Herzog ◽  
Takayuki Hibi ◽  
Ayesha Asloob Qureshi

AbstractWe introduce a class of ideals generated by a set of 2-minors of an (m×n)-matrix of indeterminates indexed by a pair of graphs. This class of ideals is a natural common generalization of binomial edge ideals and ideals generated by adjacent minors. We determine the minimal prime ideals of such ideals and give a lower bound for their degree of nilpotency. In some special cases we compute their Gröbner basis and characterize unmixedness and Cohen–Macaulayness.


2019 ◽  
Vol 13 (3-4) ◽  
pp. 229-237
Author(s):  
Stavros Kousidis ◽  
Andreas Wiemers

Abstract We improve on the first fall degree bound of polynomial systems that arise from a Weil descent along Semaev’s summation polynomials relevant to the solution of the Elliptic Curve Discrete Logarithm Problem via Gröbner basis algorithms.


Sign in / Sign up

Export Citation Format

Share Document