scholarly journals Molecular Identification of Trissolcus japonicus, Parasitoid of the Brown Marmorated Stink Bug, by Species-Specific PCR

Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 467
Author(s):  
Maple N. Chen ◽  
Ricardo D. Santander ◽  
Elijah J. Talamas ◽  
Peter J. Jentsch ◽  
Marie-Claude Bon ◽  
...  

The samurai wasp, Trissolcus japonicus (Ashmead), has been proposed as a biocontrol agent against brown marmorated stink bugs (BMSB), due to its ability to parasitize and kill BMSB eggs. However, the wasps’ small size makes it challenging for those untrained in morphological identification to determine the wasps’ species. To circumvent this problem, a molecular method was created to identify T. japonicus. The method uses species-specific primers, designed in this study, which target the variable region of the mitochondrial Cytochrome Oxidase 1 (CO1) locus. After confirming successful DNA extraction from samples, the PCR amplification using our primers produced 227-bp PCR products for all T. japonicus specimens and no amplification in other microhymenoptera candidates. Additionally, DNA from BMSB-parasitized eggs gave positive PCR amplification, while the control BMSB samples showed no amplification. This indicates that PCR with our primers specifically and sensitively differentiates T. japonicus specimens from other similar wasp species and discriminates between T. japonicus-parasitized and non-parasitized BMSB eggs. Finally, an in silico analysis of CO1 sequences demonstrated that our primers match the sequences of four different haplotypes of T. japonicus, indicating that our diagnostic method could potentially be applied to analyze T. japonicus populations throughout North America, Europe, and parts of Asia.

Nematology ◽  
2004 ◽  
Vol 6 (2) ◽  
pp. 273-277 ◽  
Author(s):  
Koji Matsunaga ◽  
Katsumi Togashi

Abstract Two species-specific PCR primer pairs were developed for identifying the two nematode species, Bursaphelenchus xylophilus and B. mucronatus. The primer pairs were developed from the sequence of ribosomal DNA (rDNA) repeats to produce DNA fragments of different lengths by PCR amplification. The DNA fragments for B. mucronatus and B. xylophilus were 210 bp and 557 bp, respectively. When mixed, neither primer pair inhibited the PCR amplification of the other. Five isolates of B. xylophilus and four isolates of B. mucronatus showed different band profiles of PCR products between the two species, but identical profiles among isolates of the same species.


1995 ◽  
Vol 18 (3) ◽  
pp. 353-356 ◽  
Author(s):  
Katrin Bastyns ◽  
Dagmar Cartuyvels ◽  
Sabine Chapelle ◽  
Peter Vandamme ◽  
Herman Goossens ◽  
...  

2009 ◽  
Vol 72 (7) ◽  
pp. 1491-1495 ◽  
Author(s):  
DANIELA PENTIMALLI ◽  
NICOLETTE PEGELS ◽  
TERESA GARCÍA ◽  
ROSARIO MARTÍN ◽  
ISABEL GONZÁLEZ

An enrichment PCR assay using species-specific primers was developed for the detection of Arcobacter butzleri, Arcobacter cryaerophilus, Arcobacter skirrowii, and Arcobacter cibarius in chicken meat. Primers for A. cryaerophilus, A. skirrowii, and A. cibarius were designed based on the gyrA gene to amplify nucleic acid fragments of 212, 257, and 145 bp, respectively. The A. butzleri–specific primers were designed flanking a 203-bp DNA fragment in the 16S rRNA gene. The specificity of the four primer pairs was assessed by PCR analysis of DNA from a panel of Arcobacter species, related Campylobacter, Helicobacter species, and other food bacteria. The applicability of the method was then validated by testing 42 fresh retail-purchased chicken samples in the PCR assay. An 18-h selective preenrichment step followed by PCR amplification with the four Arcobacter primer sets revealed the presence of Arcobacter spp. in 85.7% of the retail chicken samples analyzed. A. butzleri was the only species present in 50% of the samples, and 35.7% of the samples were positive for both A. butzleri and A. cryaerophilus. A. skirrowii and A. cibarius were not detected in any of the chicken samples analyzed. The enrichment PCR assay developed is a specific and rapid alternative for the survey of Arcobacter contamination in meat.


Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1611-1619 ◽  
Author(s):  
Guiping Yan ◽  
Richard W. Smiley ◽  
Patricia A. Okubara ◽  
Andrea M. Skantar

Heterodera avenae and H. filipjevi are economically important cyst nematodes that restrict production of cereal crops in the Pacific Northwest United States and elsewhere in the world. Identification of these two species is critical for recommending and implementing effective management practices. Primers were designed from the internal transcribed spacer (ITS) regions of H. avenae and H. filipjevi ribosomal DNA. The primers were highly specific when examined on target isolates but did not amplify DNA from nontarget Heterodera, Globodera, Meloidogyne, Pratylenchus, and other nematode species tested. Polymerase chain reaction (PCR) and amplification conditions were established, and H. avenae and H. filipjevi were clearly distinguished by PCR fragments of 242 and 170 bp, respectively. Robust PCR amplification was achieved with DNA extracted from a single egg or second-stage juvenile (J2) using a laboratory-made worm lysis buffer, and DNA from 0.5 egg or J2 using a commercial kit. The PCR assays were successfully employed for differentiation of H. filipjevi and H. avenae populations collected from eight locations in three Pacific Northwest states. This is the first report of a species-specific ITS PCR assay to detect and identify H. filipjevi. The assays for both species will enhance diagnosis of cereal cyst nematode species in infested fields.


2000 ◽  
Vol 66 (1) ◽  
pp. 332-338 ◽  
Author(s):  
Kim M. Wilson ◽  
Mark A. Schembri ◽  
Peter D. Baker ◽  
Christopher P. Saint

ABSTRACT Cylindrospermopsis raciborskii is a toxic-bloom-forming cyanobacterium that is commonly found in tropical to subtropical climatic regions worldwide, but it is also recognized as a common component of cyanobacterial communities in temperate climates. Genetic profiles of C. raciborskii were examined in 19 cultured isolates originating from geographically diverse regions of Australia and represented by two distinct morphotypes. A 609-bp region of rpoC1, a DNA-dependent RNA polymerase gene, was amplified by PCR from these isolates with cyanobacterium-specific primers. Sequence analysis revealed that all isolates belonged to the same species, including morphotypes with straight or coiled trichomes. Additional rpoC1 gene sequences obtained for a range of cyanobacteria highlighted clustering of C. raciborskii with other heterocyst-producing cyanobacteria (orders Nostocales andStigonematales). In contrast, randomly amplified polymorphic DNA and short tandemly repeated repetitive sequence profiles revealed a greater level of genetic heterogeneity amongC. raciborskii isolates than did rpoC1 gene analysis, and unique band profiles were also found among each of the cyanobacterial genera examined. A PCR test targeting a region of therpoC1 gene unique to C. raciborskii was developed for the specific identification of C. raciborskiifrom both purified genomic DNA and environmental samples. The PCR was evaluated with a number of cyanobacterial isolates, but a PCR-positive result was only achieved with C. raciborskii. This method provides an accurate alternative to traditional morphological identification of C. raciborskii.


2005 ◽  
Vol 71 (10) ◽  
pp. 6096-6103 ◽  
Author(s):  
Ana G. Binetti ◽  
Beatriz Del Río ◽  
M. Cruz Martín ◽  
Miguel A. Álvarez

ABSTRACT In the dairy industry, the characterization of Streptococcus thermophilus phage types is very important for the selection and use of efficient starter cultures. The aim of this study was to develop a characterization system useful in phage control programs in dairy plants. A comparative study of phages of different origins was initially performed based on their morphology, DNA restriction profiles, DNA homology, structural proteins, packaging mechanisms, and lifestyles and on the presence of a highly conserved DNA fragment of the replication module. However, these traditional criteria were of limited industrial value, mainly because there appeared to be no correlation between these variables and host ranges. We therefore developed a PCR method to amplify VR2, a variable region of the antireceptor gene, which allowed rapid detection of S. thermophilus phages and classification of these phages. This method has a significant advantage over other grouping criteria since our results suggest that there is a correlation between typing profiles and host ranges. This association could be valuable for the dairy industry by allowing a rational starter rotation system to be established and by helping in the selection of more suitable starter culture resistance mechanisms. The method described here is also a useful tool for phage detection, since specific PCR amplification was possible when phage-contaminated milk was used as a template (detection limit, 105 PFU ml−1).


2019 ◽  
Author(s):  
Shane Denecke ◽  
Panagiotis Ioannidis ◽  
Benjamin Buer ◽  
Aris Ilias ◽  
Vassilis Douris ◽  
...  

Abstract Background Stink bugs are an emerging threat to crop security in many parts of the globe, but there are few genetic resources available to study their physiology at a molecular level. This is especially true for tissues such as the midgut, which forms the barrier between ingested material and the inside of the body. Results Here, we focus on the midgut of the southern green stink bug Nezara viridula and use both transcriptomic and proteomic approaches to create an atlas of expression along the four compartments of the anterior-posterior axis. Estimates of the transcriptome completeness were high, which led us to compare our predicted gene set to other related stink bugs and Hemiptera, finding a high number of species-specific genes in N. viridula. To understand midgut function, gene ontology and gene family enrichment analyses were performed for the most highly expressed and specific genes in each midgut compartment. These data suggested a role for the anterior midgut (regions M1-M3) in digestion and xenobiotic metabolism, while the most posterior compartment (M4) was enriched in transmembrane proteins. A more detailed characterization of these findings was undertaken by identifying individual members of the cytochrome P450 superfamily and nutrient transporters thought to absorb amino acids or sugars. Conclusions These findings represent an initial step to understand the compartmentalization and physiology of the N. viridula midgut at a genetic level. Future studies will be able to build on this work and explore the molecular physiology of the stink bug midgut.


1998 ◽  
Vol 36 (1) ◽  
pp. 269-272 ◽  
Author(s):  
Marie-Christine Misonne ◽  
Philippe Pierre Hoet

Species-specific sequences were shown to be carried by plasmids of the three main species of Borrelia burgdorferi sensu lato involved in Lyme disease. Libraries of the 16-, 33-, and 25-kb plasmids of B. burgdorferi sensu stricto, Borrelia garinii, and Borrelia afzelii, respectively, were then built and used to isolate species-specific sequences. After sequencing of the cloned inserts, three sets of primers were designed. They were shown to determine species-specific PCR amplification products. The sensitivities of the PCR assay with these primers were 100 spirochetes for B. burgdorferi sensu stricto and 1,000 spirochetes for B. garinii and B. afzelii. The usefulness of these primers for the identification of species in biological samples (tick, serum, and cerebrospinal fluid samples) was ascertained.


1994 ◽  
Vol 14 (2) ◽  
pp. 1179-1190
Author(s):  
T P Powers ◽  
T B Shows ◽  
R L Davidson

Human and mouse fibroblast chromosomes carrying tyrosinase or b-locus genes were introduced, by microcell hybridization, into pigmented Syrian hamster melanoma cells, and the microcell hybrids were tested for transactivation of the fibroblast tyrosinase and b-locus genes. By using species-specific PCR amplification to distinguish fibroblast and melanoma cDNAs, it was demonstrated that the previously silent fibroblast tyrosinase and b-locus genes were transactivated following chromosomal transfer into pigmented melanoma cells. However, transactivation of the mouse fibroblast tyrosinase gene was unstable in microcell hybrid subclones and possibly dependent on a second fibroblast locus that could have segregated in the subclones. This second locus was not necessary for transactivation of the fibroblast b-locus gene, thus demonstrating noncoordinate transactivation of fibroblast tyrosinase and b-locus genes. Transactivation of the fibroblast tyrosinase gene in microcell hybrids apparently is dependent on the absence of a putative fibroblast extinguisher locus for tyrosinase gene expression, which presumably is responsible for the extinction of pigmentation in hybrids between karyotypically complete fibroblasts and melanoma cells.


Sign in / Sign up

Export Citation Format

Share Document