scholarly journals Bioactivity of Carlina acaulis Essential Oil and Its Main Component towards the Olive Fruit Fly, Bactrocera oleae: Ingestion Toxicity, Electrophysiological and Behavioral Insights

Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 880
Author(s):  
Roberto Rizzo ◽  
Marco Pistillo ◽  
Giacinto Salvatore Germinara ◽  
Gabriella Lo Verde ◽  
Milko Sinacori ◽  
...  

Among botanical insecticides based on essential oils (EOs) or their main components, Carlina acaulis EO and the aromatic polyacetylene carlina oxide, constituting more than 90% of its EO, were recently proven to be effective against the larvae and adults of some insect vectors and pests. In this study, the toxicity of C. acaulis EO and carlina oxide were tested on Bactrocera oleae adults using a protein bait formulation. The LC50 values of the C. acaulis EO and carlina oxide were 706 ppm and 1052 ppm, respectively. Electroantennographic (EAG) tests on B. oleae adults showed that both carlina EO and oxide elicited EAG dose-dependent responses in male and female antennae. The responses to the EO were significantly higher than those to carlina oxide, indicating that other compounds, despite their lower concentrations, can play a relevant role. Moreover, Y-tube assays carried out to assess the potential attractiveness or repellency of carlina oxide LC90 to B. oleae adults showed that it was unattractive to both males and females of B. oleae, and the time spent by both sexes in either the control or the treatment arm did not differ significantly. Overall, this study points out the potential use of C. acaulis EO and carlina oxide for the development of green and effective “lure-and-kill” tools.

Author(s):  
Kiki Varikou ◽  
Antonis Nikolakakis ◽  
Dimitris Bitsakis ◽  
Zacharias Skarakis ◽  
Nikos Garantonakis ◽  
...  

2013 ◽  
Vol 28 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Tatjana Perovic ◽  
Snjezana Hrncic

Olive fruit fly is the most harmful pest of olive fruits and important for oil production. Damage involves yield reduction as a consequence of premature fruit drop, but also a reduced quality of olive oil and olive products. There is little available data regarding the biology of Bactrocera oleae in Montenegro. Knowledge of the pest life cycle and development would improve optimization of insecticide application timing and protection of fruits, and reduce adverse effects on the environment. Investigation was conducted on the Zutica variety in an olive grove located in Bar during a three-year period. Population dynamics of the pre-imaginal stages and level of fruit infestation were monitored from mid-July until the end of October. The results of this three-year investigation showed that the beginning of infestation was always at the end of July. It was also found that, depending on environmental conditions, the level of infestation was low until the end of August. In September and October it multiplied, and reached maximum by the end of October. Regarding infestation structure, eggs and first instar larvae were the dominant developmental stages of the pest until the middle of September. From mid-September until mid-October all developmental stages (eggs, larvae, pupae) were equally present in infested fruits. Pupae, cocoons and abandoned galleries prevailed until the harvest.


EDIS ◽  
1969 ◽  
Vol 2002 (8) ◽  
Author(s):  
Howard V. Weems ◽  
James L. Nation

This document is EENY-113 (originally published as DPI Entomology Circular No. 44), one of a series of Featured Creatures from the Entomology and Nematology Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Published: September 1999. Revised: June 2003.


Author(s):  
Pierre Pommois ◽  
Pietro Brunetti ◽  
Vincenzo Bruno ◽  
Antonio Mazzei ◽  
Valerio Baldacchini ◽  
...  

Genome ◽  
1999 ◽  
Vol 42 (4) ◽  
pp. 744-751 ◽  
Author(s):  
Anna Zambetaki ◽  
Antigone Zacharopoulou ◽  
Zacharias G. Scouras ◽  
Penelope Mavragani-Tsipidou

Sign in / Sign up

Export Citation Format

Share Document