scholarly journals IoTivity Cloud-Enabled Platform for Energy Management Applications

IoT ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 73-90
Author(s):  
Yann Stephen Mandza ◽  
Atanda Raji

In developing countries today, population growth and the penetration of higher standard of living appliances in homes has resulted in a rapidly increasing residential load. In South Africa, the recent rolling blackouts and electricity price increase only highlighted this reality, calling for sustainable measures to reduce overall consumption and peak load. The dawn of the smart grid concept, embedded systems, and ICTs have paved the way for novel Home Energy Management Systems (HEMS) design. In this regard, the Internet of Things (IoT), an enabler for intelligent and efficient energy management systems, is the subject of increasing attention for optimizing HEMS design and mitigating its deployment cost constraints. In this work, we propose an IoT platform for residential energy management applications focusing on interoperability, low cost, technology availability, and scalability. We addressed the backend complexities of IoT Home Area Networks (HAN) using the Open Consortium Foundation (OCF) IoTivity-Lite middleware. To augment the quality, servicing, reduce the cost, and the development complexities, this work leverages open-source cloud technologies from Back4App as Backend-as-a-Service (BaaS) to provide consumers and utilities with a data communication platform within an experimental study illustrating time and space agnostic “mind-changing” energy feedback, Demand Response Management (DRM) under a peak shaving algorithm yielded peak load reduction around 15% of the based load, and appliance operation control using a HEM App via an Android smartphone.

Author(s):  
Yann Stephen Mandza

In developing countries today, population growth and the penetration of higher standard of living appliances in homes has resulted in a rapidly increasing residential load. In South Africa, the recent rolling blackouts and electricity price increase only highlighted this reality calling for sustainable measures to reduce the overall consumption and peak load. The dawn of the smart grid concept, embedded systems and ICTs have paved the way to novel HEMS design. In this regard, the Internet of Things (IoT), an enabler for smart and efficient energy management systems is seeing increasing attention for optimizing HEMS design and mitigate its deployment cost constraints. In this work, we propose an IoT platform for residential energy management applications focusing on interoperability, low-cost, technology availability and scalability. We focus on the backend complexities of IoT Home Area Networks (HAN) using the OCF IoTivity-Lite middleware. To augment the quality, servicing and reduce cost and complexities, this work leverages open-source Cloud technologies from Back4App as BaaS to provide consumer and Utilities with a data communication platform within an experimental study illustrating time and space agnostic “mind-changing” energy feedback, Demand Response Management (DRM) and appliance operation control via a HEM App via an Android smartphone.


2020 ◽  
Vol 13 (1) ◽  
pp. 132
Author(s):  
Christian Pfeiffer ◽  
Markus Puchegger ◽  
Claudia Maier ◽  
Ina V. Tomaschitz ◽  
Thomas P. Kremsner ◽  
...  

Due to the increase of volatile renewable energy resources, additional flexibility will be necessary in the electricity system in the future to ensure a technically and economically efficient network operation. Although home energy management systems hold potential for a supply of flexibility to the grid, private end users often neglect or even ignore recommendations regarding beneficial behavior. In this work, the social acceptance and requirements of a participatively developed home energy management system with focus on (i) system support optimization, (ii) self-consumption and self-sufficiency optimization, and (iii) additional comfort functions are determined. Subsequently, the socially-accepted flexibility potential of the home energy management system is estimated. Using methods of online household survey, cluster analysis, and energy-economic optimization, the socially-accepted techno-economic potential of households in a three-community cluster sample area is computed. Results show about a third of the participants accept the developed system. This yields a shiftable load of nearly 1.8 MW within the small sample area. Furthermore, the system yields the considerably larger monetary surplus on the supplier-side due to its focus on system support optimization. New electricity market opportunities are necessary to adequately reward a systemically useful load behavior of households.


2020 ◽  
Author(s):  
Lawryn Edmonds ◽  
Bo Liu ◽  
Hongyu Wu ◽  
Hang Zhang ◽  
Don Gruenbacher ◽  
...  

As home energy management systems (HEMSs) are implemented in homes as ways of reducing customer costs and providing demand response (DR) to the electric utility, homeowner’s privacy can be compromised. As part of the HEMS framework, homeowners are required to send load forecasts to the distribution system operator (DSO) for power balancing purposes. Submitting forecasts allows a platform for attackers to gain knowledge on user patterns based on the load information provided. The attacker could, for example, enter the home to steal valuable possessions when the homeowner is away. In this paper, we propose a framework using a smart contract within a private blockchain to keep customer information private when communicating with the DSO. The results show the HEMS users’ privacy is maintained, while the benefits of data sharing are obtained. Blockchain and its associated smart contracts may be a viable solution to security concerns in DR applications where load forecasts are sent to a DSO.


2017 ◽  
Vol 96 (4) ◽  
pp. 112-120
Author(s):  
Atsuhiro KAWAMURA ◽  
Hiroki HAYASHI ◽  
Taro MORI ◽  
Hidekazu KAJIWARA ◽  
Kazunori CHIDA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document