scholarly journals Porous Media Computational Fluid Dynamics and the Role of the First Coil in the Embolization of Ruptured Intracranial Aneurysms

2021 ◽  
Vol 10 (7) ◽  
pp. 1348
Author(s):  
Karol Wiśniewski ◽  
Bartłomiej Tomasik ◽  
Zbigniew Tyfa ◽  
Piotr Reorowicz ◽  
Ernest Bobeff ◽  
...  

Background: The objective of our project was to identify a late recanalization predictor in ruptured intracranial aneurysms treated with coil embolization. This goal was achieved by means of a statistical analysis followed by a computational fluid dynamics (CFD) with porous media modelling approach. Porous media CFD simulated the hemodynamics within the aneurysmal dome after coiling. Methods: Firstly, a retrospective single center analysis of 66 aneurysmal subarachnoid hemorrhage patients was conducted. The authors assessed morphometric parameters, packing density, first coil volume packing density (1st VPD) and recanalization rate on digital subtraction angiograms (DSA). The effectiveness of initial endovascular treatment was visually determined using the modified Raymond–Roy classification directly after the embolization and in a 6- and 12-month follow-up DSA. In the next step, a comparison between porous media CFD analyses and our statistical results was performed. A geometry used during numerical simulations based on a patient-specific anatomy, where the aneurysm dome was modelled as a separate, porous domain. To evaluate hemodynamic changes, CFD was utilized for a control case (without any porosity) and for a wide range of porosities that resembled 1–30% of VPD. Numerical analyses were performed in Ansys CFX solver. Results: A multivariate analysis showed that 1st VPD affected the late recanalization rate (p < 0.001). Its value was significantly greater in all patients without recanalization (p < 0.001). Receiver operating characteristic curves governed by the univariate analysis showed that the model for late recanalization prediction based on 1st VPD (AUC 0.94 (95%CI: 0.86–1.00) is the most important predictor of late recanalization (p < 0.001). A cut-off point of 10.56% (sensitivity—0.722; specificity—0.979) was confirmed as optimal in a computational fluid dynamics analysis. The CFD results indicate that pressure at the aneurysm wall and residual flow volume (blood volume with mean fluid velocity > 0.01 m/s) within the aneurysmal dome tended to asymptotically decrease when VPD exceeded 10%. Conclusions: High 1st VPD decreases the late recanalization rate in ruptured intracranial aneurysms treated with coil embolization (according to our statistical results > 10.56%). We present an easy intraoperatively calculable predictor which has the potential to be used in clinical practice as a tip to improve clinical outcomes.

2016 ◽  
Vol 8 (12) ◽  
pp. 1288-1293 ◽  
Author(s):  
Rafik Ouared ◽  
Ignacio Larrabide ◽  
Olivier Brina ◽  
Pierre Bouillot ◽  
Gorislav Erceg ◽  
...  

Background and purposeFlow-diverter stents (FDSs) have been used effectively to treat large neck and complex saccular aneurysms on the anterior carotid circulation. Intra-aneurysmal flow reduction induces progressive aneurysm thrombosis in most patients. Understanding the degree of flow modification necessary to induce complete aneurysm occlusion among patients with considerable hemodynamics variability may be important for treatment planning.Materials and methodsPatients with incidental intracranial saccular aneurysms who underwent FDS endovascular procedures were included and studied for a 12 months’ follow-up period. We used computational fluid dynamics on patient-specific geometries from 3D rotational angiography without and with virtual stent placement and thus compared intra-aneurysmal hemodynamic problems. Receiver operating characteristic analysis was used to estimate the stent:no-stent minimum hemodynamic ratio thresholds that significantly (p≤0.05) determined the condition necessary for long-term (12 months) aneurysm occlusion.ResultsWe included 12 consecutive patients with sidewall aneurysms located in the internal carotid or vertebral artery. The measured porosity of the 12 deployed virtual FDSs was 83±3% (mean±SD). Nine aneurysms were occluded during the 12 months’ follow-up, whereas three were not. A significant (p=0.05) area under the curve (AUC) was found for spatiotemporal mean velocity reduction in the aneurysms: AUC=0.889±0.113 (mean±SD) corresponding to a minimum velocity reduction threshold of 0.353 for occlusion to occur. The 95% CI of the AUC was 0.66 to 1.00. The sensitivity and specificity of the method were ∼99% and ∼67%, respectively. For both wall shear stress and pressure reductions in aneurysms no thresholds could be determined: AUC=0.63±0.16 (p=0.518) and 0.67±0.165 (p=0.405), respectively.ConclusionsFor successful FDS treatment the post-stent average velocity in sidewall intracranial aneurysms must be reduced by at least one-third from the initial pre-stent conditions.


2021 ◽  
pp. 197140092110269
Author(s):  
Kenji Yatomi ◽  
Yumiko Mitome-Mishima ◽  
Takashi Fujii ◽  
Kohsuke Teranishi ◽  
Hidenori Oishi ◽  
...  

Purpose Among all stents available for neuroendovascular therapy, the low-profile visible intraluminal support stent bears the highest metal coverage ratio. We deployed a low-profile visible intraluminal support stent with a delivery wire or/and microcatheter system push action to shorten the low-profile visible intraluminal support stent and thus achieve a flow diversion effect. We report our single-institution experience with the use of low-profile visible intraluminal support stents for intentionally shortened deployment (shortening group) and non-shortened deployment (non-shortening group) for unruptured intracranial aneurysms. Methods We retrospectively reviewed the medical records of 130 patients with 131 intracranial aneurysms who were treated with low-profile visible intraluminal support stent-assisted coil embolization from February 2016–January 2019. All perioperative complications were noted. Every 6 months, we re-examined the patients with cerebral angiography or magnetic resonance angiography. The outcomes of aneurysm occlusion were evaluated by the modified Raymond–Roy occlusion classification. We used the finite element method and computational fluid dynamics to investigate the hemodynamics after shortened low-profile visible intraluminal support stent deployment. Results Immediately after treatment, the modified Raymond-Roy occlusion classification was significantly better in the shortening group than in the non-shortening group ( p<0.05). The latest angiographic outcomes showed the same tendency. Hemodynamic analysis by computational fluid dynamics suggested an adequate flow diversion effect with the use of our intentional shortening method. Conclusions Stent-assisted coil embolization using this technique showed good results of a high complete occlusion rate and low complication rate. These findings suggest that shortened low-profile visible intraluminal support stent deployment yields a flow diversion effect and may lead to early intra-aneurysmal thrombus formation.


2020 ◽  
Vol 1 (1) ◽  
pp. 85-88
Author(s):  
Masanori Tsuji ◽  
Fujimaro Ishida ◽  
Tomoyuki Kishimoto ◽  
Kazuhiro Furukawa ◽  
Yoichi Miura ◽  
...  

Vascular ◽  
2014 ◽  
Vol 23 (5) ◽  
pp. 474-482 ◽  
Author(s):  
S Demirel ◽  
D Chen ◽  
Y Mei ◽  
S Partovi ◽  
H von Tengg-Kobligk ◽  
...  

Purpose: To compare postoperative morphological and rheological conditions after eversion carotid endarterectomy versus conventional carotid endarterectomy using computational fluid dynamics. Basic methods: Hemodynamic metrics (velocity, wall shear stress, time-averaged wall shear stress and temporal gradient wall shear stress) in the carotid arteries were simulated in one patient after conventional carotid endarterectomy and one patient after eversion carotid endarterectomy by computational fluid dynamics analysis based on patient specific data. Principal findings: Systolic peak of the eversion carotid endarterectomy model showed a gradually decreased pressure along the stream path, the conventional carotid endarterectomy model revealed high pressure (about 180 Pa) at the carotid bulb. Regions of low wall shear stress in the conventional carotid endarterectomy model were much larger than that in the eversion carotid endarterectomy model and with lower time-averaged wall shear stress values (conventional carotid endarterectomy: 0.03–5.46 Pa vs. eversion carotid endarterectomy: 0.12–5.22 Pa). Conclusions: Computational fluid dynamics after conventional carotid endarterectomy and eversion carotid endarterectomy disclosed differences in hemodynamic patterns. Larger studies are necessary to assess whether these differences are consistent and might explain different rates of restenosis in both techniques.


2013 ◽  
Vol 34 (9) ◽  
pp. 1785-1791 ◽  
Author(s):  
P. van Ooij ◽  
J.J. Schneiders ◽  
H.A. Marquering ◽  
C.B. Majoie ◽  
E. van Bavel ◽  
...  

Author(s):  
Nikhil Tulshibagwale ◽  
Stephen P. Gent

In this study, a commercially available computational fluid dynamics (CFD) program was used to simulate coil embolization techniques, standard coiling (SC) and stent-assisted coiling (SAC), in simplified vessels that are representative of vessels found in the brain. The test models included a curved vessel, ranging from 3mm to 4mm in diameter. The vessel was afflicted with a spherical aneurysm, ranging from 8mm to 16mm in diameter. The four test cases were simulated without treatment, with SC treatment, and with SAC treatment, for a total of twelve simulations. The parameters of interest were blood volume flow into aneurysm, fluid velocity, wall shear stress (WSS), and vorticity. Results of the simulations indicate, on average, SC and SAC reduced volume flow into the aneurysm by 50% and to over 60%, respectively. Both SC and SAC appeared to reduce distal neck WSS. Both treatments reduced average overall dome WSS by approximately 76%. Average aneurysm neck velocity was reduced by both treatments; SC reduced neck velocity by 69% and SAC reduced neck velocity by 75%. Information on SC and SAC efficacy in idealized scenarios could assist medical professionals determining viable approaches for patient-specific cases and lays foundation for future CFD studies exploring coil embolization treatments.


Sign in / Sign up

Export Citation Format

Share Document