phase contrast mri
Recently Published Documents


TOTAL DOCUMENTS

410
(FIVE YEARS 63)

H-INDEX

38
(FIVE YEARS 3)

Diagnostics ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2280
Author(s):  
Toshiaki Oda ◽  
Vadim Malis ◽  
Taija Finni ◽  
Ryuta Kinugasa ◽  
Shantanu Sinha

Objective: To quantify the spatial heterogeneity of displacement during voluntary isometric contraction within and between the different compartments of the quadriceps. Methods: The thigh muscles of seven subjects were imaged on an MRI scanner while performing isometric knee extensions at 40% maximal voluntary contraction. A gated velocity-encoded phase contrast MRI sequence in axial orientations yielded tissue velocity-encoded dynamic images of the four different compartments of the thigh muscles (vastus lateralis (VL), vastus medialis (VM), vastus intermedius (VI), and rectus femoris (RF)) at three longitudinal locations of the proximal–distal length: 17.5% (proximal), 50% (middle), and 77.5% (distal). The displacement, which is the time integration of the measured velocity, was calculated along the three orthogonal axes using a tracking algorithm. Results: The displacement of the muscle tissues was clearly nonuniform within each axial section as well as between the three axial locations. The ensemble average of the magnitude of the total displacement as a synthetic vector of the X, Y, and Z displacements was significantly larger in the VM at the middle location (p < 0.01), and in the VI at the distal location than in the other three muscles. The ensemble average of Z-axis displacement, which was almost aligned with the line of action, was significantly larger in VI than in the other three muscles in all three locations. Displacements of more than 20 mm were observed around the central aponeuroses, such as those between VI and the other surrounding muscles. Conclusions: These results imply that the quadriceps muscles act as one functional unit in normal force generation through the central aponeuroses despite complex behavior in each of the muscles, each of which possesses different physiological characteristics and architectures.


Author(s):  
Jost M. Kollmeier ◽  
Oleksandr Kalentev ◽  
Jakob Klosowski ◽  
Dirk Voit ◽  
Jens Frahm

2021 ◽  
Author(s):  
Juchen Li ◽  
Mengchao Pei ◽  
Binshi Bo ◽  
Xinxin Zhao ◽  
Jing Cang ◽  
...  

Roles of Cerebrospinal fluid (CSF) in brain waste clearance and homeostasis has been increasingly recognized, thus measuring its flow dynamics could provide important information about its function and perturbance. While phase-contrast MRI can be used for non-invasive flow mapping, so far its mapping of low velocity flow (such as mouse brain CSF) is not possible. Here we developed a novel generalized Hadamard encoding based multi-band acceleration scheme dubbed HEAP-METRIC (Hadamard Encoding APproach of Multi-band Excitation for short TR Imaging aCcelerating), and with significantly increased SNR per time, HEAP-METRIC phase-contrast MRI achieved fast and accurate mapping of slow (~102 micron/s) flow. Utilizing this novel method, we revealed a heterogeneous global pattern of CSF flow in the awake mouse brain with a averaged flow of ~200 micron/s, and further found isoflurane anesthesia reduced CSF flow that was accompanied by reduction of glymphatic function. Therefore, we developed the novel HEAP-METRIC phase-contrast MRI for mapping low velocity flow, and demonstrated its capability for global mapping of mouse CSF flow and its potential alterations related to various physiological or pathological conditions.


Author(s):  
Frida Truedsson ◽  
Christian L. Polte ◽  
Sinsia A. Gao ◽  
Åse A. Johnsson ◽  
Odd Bech-Hanssen ◽  
...  

AbstractThis study aimed to investigate if and how complex flow influences the assessment of aortic regurgitation (AR) using phase contrast MRI in patients with chronic AR. Patients with moderate (n = 15) and severe (n = 28) chronic AR were categorized into non-complex flow (NCF) or complex flow (CF) based on the presence of systolic backward flow volume. Phase contrast MRI was performed repeatedly at the level of the sinotubular junction (Ao1) and 1 cm distal to the sinotubular junction (Ao2). All AR patients were assessed to have non-severe AR or severe AR (cut-off values: regurgitation volume (RVol) ≥ 60 ml and regurgitation fraction (RF) ≥ 50%) in both measurement positions. The repeatability was significantly lower, i.e. variation was larger, for patients with CF than for NCF (≥ 12 ± 12% versus ≥ 6 ± 4%, P ≤ 0.03). For patients with CF, the repeatability was significantly lower at Ao2 compared to Ao1 (≥ 21 ± 20% versus ≥ 12 ± 12%, P ≤ 0.02), as well as the assessment of regurgitation (RVol: 42 ± 34 ml versus 54 ± 42 ml, P < 0.001; RF: 30 ± 18% versus 34 ± 16%, P = 0.01). This was not the case for patients with NCF. The frequency of patients that changed in AR grade from severe to non-severe when the position of the measurement changed from Ao1 to Ao2 was higher for patients with CF compared to NCF (RVol: 5/26 (19%) versus 1/17 (6%), P = 0.2; RF: 4/26 (15%) versus 0/17 (0%), P = 0.09). Our study shows that complex flow influences the quantification of chronic AR, which can lead to underestimation of AR severity when using PC-MRI.


2021 ◽  
pp. 110625
Author(s):  
Suyue Han ◽  
Todd Currier ◽  
Mahdiar Edraki ◽  
Boyuan Liu ◽  
Maureen E. Lynch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document