scholarly journals Dosimetric Effects of Air Cavities for MRI-Guided Online Adaptive Radiation Therapy (MRgART) of Prostate Bed after Radical Prostatectomy

2022 ◽  
Vol 11 (2) ◽  
pp. 364
Author(s):  
Jonathan Pham ◽  
Minsong Cao ◽  
Stephanie M. Yoon ◽  
Yu Gao ◽  
Amar U. Kishan ◽  
...  

Purpose: To evaluate dosimetric impact of air cavities and their corresponding electron density correction for 0.35 tesla (T) Magnetic Resonance-guided Online Adaptive Radiation Therapy (MRgART) of prostate bed patients. Methods: Three 0.35 T MRgRT plans (anterior–posterior (AP) beam, AP–PA beams, and clinical intensity modulated radiation therapy (IMRT)) were generated on a prostate bed patient’s (Patient A) planning computed tomography (CT) with artificial rectal air cavities of various sizes (0–3 cm, 0.5 cm increments). Furthermore, two 0.35 T MRgART plans (‘Deformed’ and ‘Override’) were generated on a prostate bed patient’s (Patient B) daily magnetic resonance image (MRI) with artificial rectal air cavities of various sizes (0–3 cm, 0.5 cm increments) and on five prostate bed patient’s (Patient 1–5) daily MRIs (2 MRIs: Fraction A and B) with real air cavities. For each MRgART plan, daily MRI electron density map was obtained by deformable registration with simulation CT. In the ‘Deformed’ plan, a clinical IMRT plan is calculated on the daily MRI with electron density map obtained from deformable registration only. In the ‘Override’ plan, daily MRI and simulation CT air cavities are manually corrected and bulk assigned air and water density on the registered electron density map, respectively. Afterwards, the clinical IMRT plan is calculated. Results: For the MRgRT plans, AP and AP–PA plans’ rectum/rectal wall max dose increased with increasing air cavity size, where the 3 cm air cavity resulted in a 20%/17% and 13%/13% increase, relative to no air cavity, respectively. Clinical IMRT plan was robust to air cavity size, where dose change remained less than 1%. For the MRgART plans, daily MRI electron density maps, obtained from deformable registration with simulation CT, was unable to accurately produce electron densities reflecting the air cavities. However, for the artificial daily MRI air cavities, dosimetric change between ‘Deformed’ and ‘Override’ plan was small (<4%). Similarly, for the real daily MRI air cavities, clinical constraint changes between ‘Deformed’ and ‘Override’ plan was negligible and did not lead to change in clinical decision for adaptive planning except for two fractions. In these fractions, the ‘Override’ plan indicated that the bladder max dose and rectum V35.7 exceeded the constraint, while the ‘Deformed’ plan showed acceptable dose, although the absolute difference was only 0.3 Gy and 0.03 cc, respectively. Conclusion: Clinical 0.35 T IMRT prostate bed plans are dosimetrically robust to air cavities. MRgART air cavity electron density correction shows clinically insignificant change and is not warranted on low-field systems.

1998 ◽  
Vol 54 (1) ◽  
pp. 81-85 ◽  
Author(s):  
F. M. D. Vellieux

A comparison has been made of two methods for electron-density map improvement by the introduction of atomicity, namely the iterative skeletonization procedure of the CCP4 program DM [Cowtan & Main (1993). Acta Cryst. D49, 148–157] and the pseudo-atom introduction followed by the refinement protocol in the program suite DEMON/ANGEL [Vellieux, Hunt, Roy & Read (1995). J. Appl. Cryst. 28, 347–351]. Tests carried out using the 3.0 Å resolution electron density resulting from iterative 12-fold non-crystallographic symmetry averaging and solvent flattening for the Pseudomonas aeruginosa ornithine transcarbamoylase [Villeret, Tricot, Stalon & Dideberg (1995). Proc. Natl Acad. Sci. USA, 92, 10762–10766] indicate that pseudo-atom introduction followed by refinement performs much better than iterative skeletonization: with the former method, a phase improvement of 15.3° is obtained with respect to the initial density modification phases. With iterative skeletonization a phase degradation of 0.4° is obtained. Consequently, the electron-density maps obtained using pseudo-atom phases or pseudo-atom phases combined with density-modification phases are much easier to interpret. These tests also show that for ornithine transcarbamoylase, where 12-fold non-crystallographic symmetry is present in the P1 crystals, G-function coupling leads to the simultaneous decrease of the conventional R factor and of the free R factor, a phenomenon which is not observed when non-crystallographic symmetry is absent from the crystal. The method is far less effective in such a case, and the results obtained suggest that the map sorting followed by refinement stage should be by-passed to obtain interpretable electron-density distributions.


Author(s):  
David Blow

When everything has been done to make the phases as good as possible, the time has come to examine the image of the structure in the form of an electron-density map. The electron-density map is the Fourier transform of the structure factors (with their phases). If the resolution and phases are good enough, the electron-density map may be interpreted in terms of atomic positions. In practice, it may be necessary to alternate between study of the electron-density map and the procedures mentioned in Chapter 10, which may allow improvements to be made to it. Electron-density maps contain a great deal of information, which is not easy to grasp. Considerable technical effort has gone into methods of presenting the electron density to the observer in the clearest possible way. The Fourier transform is calculated as a set of electron-density values at every point of a three-dimensional grid labelled with fractional coordinates x, y, z. These coordinates each go from 0 to 1 in order to cover the whole unit cell. To present the electron density as a smoothly varying function, values have to be calculated at intervals that are much smaller than the nominal resolution of the map. Say, for example, there is a protein unit cell 50 Å on a side, at a routine resolution of 2Å. This means that some of the waves included in the calculation of the electron density go through a complete wave cycle in 2 Å. As a rule of thumb, to represent this properly, the spacing of the points on the grid for calculation must be less than one-third of the resolution. In our example, this spacing might be 0.6 Å. To cover the whole of the 50 Å unit cell, about 80 values of x are needed; and the same number of values of y and z. The electron density therefore needs to be calculated on an array of 80×80×80 points, which is over half a million values. Although our world is three-dimensional, our retinas are two-dimensional, and we are good at looking at pictures and diagrams in two dimensions.


1973 ◽  
Vol 70 (6) ◽  
pp. 1793-1794 ◽  
Author(s):  
M. J. Adams ◽  
G. C. Ford ◽  
P. J. Lentz ◽  
A. Liljas ◽  
M. G. Rossmann

Nature ◽  
1980 ◽  
Vol 284 (5752) ◽  
pp. 189-190 ◽  
Author(s):  
V. V. Borisov ◽  
S. N. Borisova ◽  
N. I. Sosfenov ◽  
B. K. Vainshtein

2003 ◽  
Vol 36 (2) ◽  
pp. 230-238 ◽  
Author(s):  
Angela Altomare ◽  
Rocco Caliandro ◽  
Carmelo Giacovazzo ◽  
Anna Grazia Giuseppina Moliterni ◽  
Rosanna Rizzi

Theab initiocrystal structure solution from powder diffraction data can be attemptedviadirect methods. If heavy atoms are present, they are usually correctly located; then some crystal chemical information can be exploited to complete the partial structure model. Organic structures are more resistant to direct methods; as an alternative, their molecular geometry is used as prior information for Monte Carlo methods. In this paper, a new procedure is described which combines the information contained in the electron density map provided by direct methods with a Monte Carlo method which uses simulated annealing as a minimization algorithm. A figure of merit has been designed based on the agreement between the experimental and calculated profiles, and on the positions of the peaks in the electron density map. The procedure is completely automatic and has been included inEXPO; its performance has been validated and tested for a set of known molecular structures.


Sign in / Sign up

Export Citation Format

Share Document