electron density map
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 13)

H-INDEX

33
(FIVE YEARS 2)

2022 ◽  
Vol 11 (2) ◽  
pp. 364
Author(s):  
Jonathan Pham ◽  
Minsong Cao ◽  
Stephanie M. Yoon ◽  
Yu Gao ◽  
Amar U. Kishan ◽  
...  

Purpose: To evaluate dosimetric impact of air cavities and their corresponding electron density correction for 0.35 tesla (T) Magnetic Resonance-guided Online Adaptive Radiation Therapy (MRgART) of prostate bed patients. Methods: Three 0.35 T MRgRT plans (anterior–posterior (AP) beam, AP–PA beams, and clinical intensity modulated radiation therapy (IMRT)) were generated on a prostate bed patient’s (Patient A) planning computed tomography (CT) with artificial rectal air cavities of various sizes (0–3 cm, 0.5 cm increments). Furthermore, two 0.35 T MRgART plans (‘Deformed’ and ‘Override’) were generated on a prostate bed patient’s (Patient B) daily magnetic resonance image (MRI) with artificial rectal air cavities of various sizes (0–3 cm, 0.5 cm increments) and on five prostate bed patient’s (Patient 1–5) daily MRIs (2 MRIs: Fraction A and B) with real air cavities. For each MRgART plan, daily MRI electron density map was obtained by deformable registration with simulation CT. In the ‘Deformed’ plan, a clinical IMRT plan is calculated on the daily MRI with electron density map obtained from deformable registration only. In the ‘Override’ plan, daily MRI and simulation CT air cavities are manually corrected and bulk assigned air and water density on the registered electron density map, respectively. Afterwards, the clinical IMRT plan is calculated. Results: For the MRgRT plans, AP and AP–PA plans’ rectum/rectal wall max dose increased with increasing air cavity size, where the 3 cm air cavity resulted in a 20%/17% and 13%/13% increase, relative to no air cavity, respectively. Clinical IMRT plan was robust to air cavity size, where dose change remained less than 1%. For the MRgART plans, daily MRI electron density maps, obtained from deformable registration with simulation CT, was unable to accurately produce electron densities reflecting the air cavities. However, for the artificial daily MRI air cavities, dosimetric change between ‘Deformed’ and ‘Override’ plan was small (<4%). Similarly, for the real daily MRI air cavities, clinical constraint changes between ‘Deformed’ and ‘Override’ plan was negligible and did not lead to change in clinical decision for adaptive planning except for two fractions. In these fractions, the ‘Override’ plan indicated that the bladder max dose and rectum V35.7 exceeded the constraint, while the ‘Deformed’ plan showed acceptable dose, although the absolute difference was only 0.3 Gy and 0.03 cc, respectively. Conclusion: Clinical 0.35 T IMRT prostate bed plans are dosimetrically robust to air cavities. MRgART air cavity electron density correction shows clinically insignificant change and is not warranted on low-field systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ikuko Miyaguchi ◽  
Miwa Sato ◽  
Akiko Kashima ◽  
Hiroyuki Nakagawa ◽  
Yuichi Kokabu ◽  
...  

AbstractLow-resolution electron density maps can pose a major obstacle in the determination and use of protein structures. Herein, we describe a novel method, called quality assessment based on an electron density map (QAEmap), which evaluates local protein structures determined by X-ray crystallography and could be applied to correct structural errors using low-resolution maps. QAEmap uses a three-dimensional deep convolutional neural network with electron density maps and their corresponding coordinates as input and predicts the correlation between the local structure and putative high-resolution experimental electron density map. This correlation could be used as a metric to modify the structure. Further, we propose that this method may be applied to evaluate ligand binding, which can be difficult to determine at low resolution.


2021 ◽  
Author(s):  
Ikuko Miyaguchi ◽  
Miwa Sato ◽  
Akiko Kashima ◽  
Hiroyuki Nakagawa ◽  
Yuichi Kokabu ◽  
...  

Abstract Low-resolution electron density maps can pose a major obstacle in the determination and use of protein structures. Herein, we describe a novel method, quality assessment based on an electron density map (QAEmap), that evaluates local protein structures determined by X-ray crystallography and corrects structural errors using low-resolution maps. QAEmap uses a three-dimensional deep convolutional neural network with electron density maps and their corresponding coordinates as input and predicts the correlation between the local structure and the putative high-resolution experimental electron density map. This estimates how well the structure fits the high-resolution map. Further, we propose that this method may be applied to evaluate ligand binding, which can be difficult to determine at low resolution.


2021 ◽  
Author(s):  
Cheng Zong ◽  
Chi Zhang ◽  
Peng Lin ◽  
Jiaze Yin ◽  
Yeran Bai ◽  
...  

The potential-dependent photothermal signal, which is sensitive to the free electron density, map the evolution of surface species on the electrode in real time.


Author(s):  
Alicia M. Churchill-Angus ◽  
Svetlana E. Sedelnikova ◽  
Thomas H. B. Schofield ◽  
Patrick J. Baker

Tripartite α-pore-forming toxins are constructed of three proteins (A, B and C) and are found in many bacterial pathogens. While structures of the B and C components from Gram-negative bacteria have been described, the structure of the A component of a Gram-negative α-pore-forming toxin has so far proved elusive. SmhA, the A component from the opportunistic human pathogen Serratia marcescens, has been cloned, overexpressed and purified. Crystals were grown of selenomethionine-derivatized protein and anomalous data were collected. Phases were calculated and an initial electron-density map was produced.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4388 ◽  
Author(s):  
Przemysław Starynowicz ◽  
Sławomir Berski ◽  
Nurbey Gulia ◽  
Karolina Osowska ◽  
Tadeusz Lis ◽  
...  

The electron density of p-CH3CH2COC6H4-C≡CC≡C-p-C6H4COCH3CH2 has been investigated on the basis of single-crystal X-ray diffraction data collected to high resolution at 100 K and from theoretical calculations. An analysis of the X-ray data of the diyne showed interesting “liquidity” of electron distribution along the carbon chain compared to 1,2-diphenylacetylene. These findings are compatible with the results of topological analysis of Electron Localization Function (ELF), which has also revealed a larger (than expected) concentration of the electron density at the single bonds. Both methods indicate a clear π-type or “banana” character of a single bond and a significant distortion from the typical conjugated structure of the bonding in the diyne with a small contribution of cumulenic structures.


Author(s):  
Ji-Eun Bae ◽  
In Jung Kim ◽  
Yongbin Xu ◽  
Ki Hyun Nam

Substrate binding proteins (SBP) bind to specific ligands in the periplasmic region and bind to membrane proteins to participate in transport or signal transduction. Typical SBPs consist of two &alpha;/&beta; domains and recognize the substrate by hinge motion between two domains. Conversely, short length Rhodothermus marinus SBP (named as RmSBP) exists around the methyl-accepting chemotaxis protein. We previously determined the crystal structure of RmSBP consisting of a single &alpha;/&beta; domain, but the substrate recognition mechanism is still unclear. To better understand the short length RmSBP, we performed comparative structure analysis, computational substrate docking, and X-ray crystallographic study. RmSBP shares a high level of similarity in &alpha;/&beta; domain with other SBP proteins, but it has a distinct topology in the C-term region. The substrate binding model suggested that conformational change in the peripheral region of RmSBP was required to recognize the substrate. We determined the crystal structures of RmSBP at pH 5.5, 6.0, and 7.5. RmSBP showed structural flexibility of the &beta;1-&alpha;2 loop, &beta;5-&beta;6 loop, and extended C-term domain based on the electron density map and temperature B-factor analysis. These results provide information that will further the understanding of the function of the short length SBP.


2019 ◽  
Author(s):  
Marc A. Dämgen ◽  
Philip C. Biggin

AbstractFast neurotransmission is mediated by pentameric ligand-gated ion channels. Glycine receptors are chloride-selective members of this receptor family that mediate inhibitory synaptic transmission and are implicated in neurological disorders including autism and hyperekplexia. They have been structurally characterized by both X-ray crystallography and cryo electron microscopy studies, with the latter giving rise to what was proposed as a possible open state. However, recent work has questioned the physiological relevance of this open state structure, since it rapidly collapses in molecular dynamics simulations. Here, we show that the collapse can be avoided by a careful equilibration protocol that reconciles the more problematic regions of the original electron-density map and gives a stable open state that shows frequent selective chloride permeation. The protocol developed in this work provides a means to refine open-like structures of the whole pentameric ligand-gated ion channel superfamily and reconciles the previous issues with the cryo-EM structure.


Sign in / Sign up

Export Citation Format

Share Document