prostate bed
Recently Published Documents


TOTAL DOCUMENTS

207
(FIVE YEARS 80)

H-INDEX

19
(FIVE YEARS 3)

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 177
Author(s):  
Luca Filippi ◽  
Oreste Bagni ◽  
Carmelo Crisafulli ◽  
Ivan Cerio ◽  
Gabriele Brunotti ◽  
...  

Our aim was to assess the detection rate (DR) of positron emission computed tomography (PET/CT) with anti-1-amino-3-[18F]-flurocyclobutane-1-carboxylic acid (18F-FACBC) in patients with biochemical recurrence (BCR) from prostate cancer (PC). As a secondary endpoint, we evaluated 18F-FACBC PET/CT’s impact on patients management. Clinical records of 81 patients submitted to 18F-FACBC PET/CT due to PC BCR in two Italian Nuclear Medicine Units were retrospectively assessed. DR was gauged in the whole cohort and stratifying patients by discrete intervals of PSA levels. PET/CT’s impact on clinical management was scored as (1) major if it entailed an intermodality change (e.g., from systemic to loco-regional therapy); (2) minor if it led to an intramodality change (e.g., modified radiotherapy field). PET/CT’s DR resulted in 76.9% in the whole cohort, with a positive predictive value of 96.7%. Stratified by PSA quartile intervals, PET/CT’s DR was 66.7%, 71.4%, 78.9% and 90% for PSA 0.2–0.57 ng/mL, 0.58–0.99 ng/mL, 1–1.5 ng/mL and >1.5 ng/mL without significant difference among groups (p = 0.81). The most common sites of relapse were prostate bed and pelvic lymph nodes (59.3%). PET/CT impacted on clinical management in 33/81 cases (40.7%), leading to a major change in 30 subjects (90.9%). 18F-FACBC PET/CT localized recurrence in patients with BCR, with meaningful DR also at low PSA levels and significantly impacted on clinical management.


2022 ◽  
Vol 11 (2) ◽  
pp. 364
Author(s):  
Jonathan Pham ◽  
Minsong Cao ◽  
Stephanie M. Yoon ◽  
Yu Gao ◽  
Amar U. Kishan ◽  
...  

Purpose: To evaluate dosimetric impact of air cavities and their corresponding electron density correction for 0.35 tesla (T) Magnetic Resonance-guided Online Adaptive Radiation Therapy (MRgART) of prostate bed patients. Methods: Three 0.35 T MRgRT plans (anterior–posterior (AP) beam, AP–PA beams, and clinical intensity modulated radiation therapy (IMRT)) were generated on a prostate bed patient’s (Patient A) planning computed tomography (CT) with artificial rectal air cavities of various sizes (0–3 cm, 0.5 cm increments). Furthermore, two 0.35 T MRgART plans (‘Deformed’ and ‘Override’) were generated on a prostate bed patient’s (Patient B) daily magnetic resonance image (MRI) with artificial rectal air cavities of various sizes (0–3 cm, 0.5 cm increments) and on five prostate bed patient’s (Patient 1–5) daily MRIs (2 MRIs: Fraction A and B) with real air cavities. For each MRgART plan, daily MRI electron density map was obtained by deformable registration with simulation CT. In the ‘Deformed’ plan, a clinical IMRT plan is calculated on the daily MRI with electron density map obtained from deformable registration only. In the ‘Override’ plan, daily MRI and simulation CT air cavities are manually corrected and bulk assigned air and water density on the registered electron density map, respectively. Afterwards, the clinical IMRT plan is calculated. Results: For the MRgRT plans, AP and AP–PA plans’ rectum/rectal wall max dose increased with increasing air cavity size, where the 3 cm air cavity resulted in a 20%/17% and 13%/13% increase, relative to no air cavity, respectively. Clinical IMRT plan was robust to air cavity size, where dose change remained less than 1%. For the MRgART plans, daily MRI electron density maps, obtained from deformable registration with simulation CT, was unable to accurately produce electron densities reflecting the air cavities. However, for the artificial daily MRI air cavities, dosimetric change between ‘Deformed’ and ‘Override’ plan was small (<4%). Similarly, for the real daily MRI air cavities, clinical constraint changes between ‘Deformed’ and ‘Override’ plan was negligible and did not lead to change in clinical decision for adaptive planning except for two fractions. In these fractions, the ‘Override’ plan indicated that the bladder max dose and rectum V35.7 exceeded the constraint, while the ‘Deformed’ plan showed acceptable dose, although the absolute difference was only 0.3 Gy and 0.03 cc, respectively. Conclusion: Clinical 0.35 T IMRT prostate bed plans are dosimetrically robust to air cavities. MRgART air cavity electron density correction shows clinically insignificant change and is not warranted on low-field systems.


The Prostate ◽  
2022 ◽  
Author(s):  
Yilin Cao ◽  
Daniel Y. Song ◽  
Curtiland Deville ◽  
Theodore L. DeWeese ◽  
Stephen Greco ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Axel Cailleteau ◽  
Paul Sargos ◽  
Fred Saad ◽  
Igor Latorzeff ◽  
Stéphane Supiot

Although salvage prostate bed radiotherapy is highly effective in biochemically-relapsing prostate cancer patients following prostatectomy, relapses remain frequent and improvements are needed. Randomized phase 3 trials have shown the benefit of adding androgen-depriving therapy to irradiation, but not all patients benefit from this combination. Preclinical studies have shown that novel agents targeting the androgen receptor, DNA repair, PI3K/AKT/mTOR pathways, or the hypoxic microenvironment may help increase the response to prostate bed irradiation while minimizing potential side effects. This perspective review focuses on the most relevant molecules that may have an impact when combined with salvage radiotherapy, and underlines the strategies that need to be developed to increase the efficacy of salvage post-prostatectomy radiotherapy in prostate cancer patients.


2021 ◽  
Vol 92 ◽  
pp. 32-39
Author(s):  
Marica Masi ◽  
Valeria Landoni ◽  
Adriana Faiella ◽  
Alessia Farneti ◽  
Simona Marzi ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Nicolas Giraud ◽  
Nicolas Benziane ◽  
Ulrike Schick ◽  
Jean-Baptiste Beauval ◽  
Ahmad Chaddad ◽  
...  

Approximately 30% of patients treated with radical prostatectomy (RP) for prostate cancers experience biochemical recurrence (BCR). Post-operative radiation therapy (RT) can be either offered immediately after the surgery in case of aggressive pathological features or proposed early if BCR occurs. Until recently, little data were available regarding the optimal RT timing, protocol, volumes to treat, and the benefit of adding androgen deprivation therapies to post-operative RT. In this review, we aim to pragmatically discuss current literature data on these points. Early salvage RT appears to be the optimal post-operative approach, improving oncological outcomes especially with low prostate-specific antigen (PSA) levels, as well as sparing several unnecessary adjuvant treatments. The standard RT dose is still 64–66 Gy to the prostate bed in conventional fractionation, but hypofractionation protocols are emerging pending on late toxicity data. Several scientific societies have published contouring atlases, even though they are heterogeneous and deserve future consensus. During salvage RT, the inclusion of pelvic lymph nodes is also controversial, but preliminary data show a possible benefit for PSA &gt; 0.34 ng/ml at the cost of increased hematological side effects. Concomitant ADT and its duration are also discussed, possibly advantageous (at least in terms of metastasis-free survival) for PSA rates over 0.6 ng/ml, taking into account life expectancy and cardiovascular comorbidities. Intensified regimens, for instance, with new-generation hormone therapies, could further improve outcomes in carefully selected patients. Finally, recent advances in molecular imaging, as well as upcoming breakthroughs in genomics and artificial intelligence tools, could soon reshuffle the cards of the current therapeutic strategy.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1164
Author(s):  
Bruno Mendes ◽  
Inês Domingues ◽  
Augusto Silva ◽  
João Santos

pca is mostly asymptomatic at an early stage and often painless requiring active surveillance screening. trus is the principal method to diagnose pca following a histological examination by observing cell pattern irregularities and assigning the gs according to the recommended guidelines. This procedure presents sampling errors and, being invasive may cause complications to the patients. ebrt is presented as curative option for localised and locally advanced disease, as a palliative option for metastatic low-volume disease or after prostatectomy for prostate bed and pelvic nodes salvage. In the ebrt worflow a ct scan is performed as the basis for dose calculations and volume delineations. In this work, we evaluated the use of data-characterization algorithms (radiomics) from ct images for pca aggressiveness assessment. The fundamental motivation relies on the wide availability of ct images and the need to provide tools to assess ebrt effectiveness. We used Pyradiomics and lifex to extract features and search for a radiomic signature within ct images. Finnaly, when applying pcan to the features, we were able to show promising results.


Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Geumju Park ◽  
Yeon Joo Kim ◽  
Hanjong Ahn ◽  
Won Park ◽  
Ji sung Lee ◽  
...  

Abstract Background While several phase III trials have investigated the role of hypofractionated radiotherapy in the definitive treatment of localized prostate cancer, prospective data reporting the outcomes of hypofractionated radiotherapy in the postoperative treatment setting are sparse. Therefore, this study is designed to assess the efficacy and treatment-related toxicity of hypofractionated salvage radiotherapy for the treatment of biochemical recurrence in men who underwent radical prostatectomy. The primary objective of this trial is to investigate whether hypofractionated radiotherapy improves biochemical control compared with conventionally fractionated radiotherapy. In addition, treatment-related toxicity, quality of life, and survival will be evaluated as secondary endpoints. Methods In this prospective, randomized, multi-institutional trial (the SHARE study), patients with intermediate- or high-risk prostate cancer will be randomized to receive either hypofractionated radiotherapy (65 Gy in 2.5-Gy fractions) or conventionally fractionated radiotherapy (66 Gy in 2-Gy fractions). Prostate bed irradiation or elective pelvic nodal irradiation including the prostate bed will be performed using intensity-modulated radiotherapy and daily image guidance. Treatment efficacy will be assessed using the serum tumor marker prostate-specific antigen, and toxicity will be evaluated through both physician- and patient-reported outcomes. Quality of life will also be investigated. Discussion This study is designed to demonstrate whether hypofractionated radiotherapy is beneficial in terms of biochemical control and toxicity compared with standard salvage radiotherapy. If hypofractionated radiotherapy is shown to be superior to conventionally fractionated radiotherapy, it will mean that improved biochemical control can be achieved, accompanied by greater patient convenience and more efficient use of medical resources. Trial registration ClinicalTrials.gov NCT03920033. Registered on 18 April 2019


Sign in / Sign up

Export Citation Format

Share Document