scholarly journals Model Test and Numerical Simulation of Grouted Connections for Offshore Wind Turbine Under Static Axial Load

2020 ◽  
Vol 8 (7) ◽  
pp. 543
Author(s):  
Weiqiu Zhong ◽  
Wuxu Li ◽  
Tao Yang ◽  
Deming Liu ◽  
Lintao Li

The bearing capacity of the grouted connections is investigated through the model test and numerical simulation with two rates (low and high) and four kinds of specimens: shorter without shear keys, shorter with shear keys, longer with shear keys, and conical with shear keys. It reveals that the bearing characteristics of the specimen of longer with shear keys is worse than the specimen of conical with shear keys, but better than the specimen of shorter with shear keys. Moreover, the bearing characteristics of the specimen of shorter without shear keys is the worst one.

Author(s):  
Tomoaki Utsunomiya ◽  
Shigeo Yoshida ◽  
Soichiro Kiyoki ◽  
Iku Sato ◽  
Shigesuke Ishida

In this paper, dynamic response of a Floating Offshore Wind Turbine (FOWT) with spar-type floating foundation at power generation is presented. The FOWT mounts a 100kW wind turbine of down-wind type, with the rotor’s diameter of 22m and a hub-height of 23.3m. The floating foundation consists of PC-steel hybrid spar. The upper part is made of steel whereas the lower part made of prestressed concrete segments. The FOWT was installed at the site about 1km offshore from Kabashima Island, Goto city, Nagasaki prefecture on June 11th, 2012. Since then, the field measurement had been made until its removal in June 2013. In this paper, the dynamic behavior during the power generation is presented, where the comparison with the numerical simulation by aero-hydro-servo-mooring dynamics coupled program is made.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5102
Author(s):  
Yu Hu ◽  
Jian Yang ◽  
Charalampos Baniotopoulos

Offshore wind energy is a rapidly maturing renewable energy technology that is poised to play an important role in future energy systems. The respective advances refer among others to the monopile foundation that is frequently used to support wind turbines in the marine environment. In the present research paper, the structural response of tall wind energy converters with various stiffening schemes is studied during the erection phase as the latter are manufactured in modules that are assembled in situ. Rings, vertical stiffeners, T-shaped stiffeners and orthogonal stiffeners are considered efficient stiffening schemes to strengthen the tower structures. The loading bearing capacity of offshore monopile wind turbine towers with the four types of stiffeners were modeled numerically by means of finite elements. Applying a nonlinear buckling analysis, the ultimate bearing capacity of wind turbine towers with four standard stiffening schemes were compared in order to obtain the optimum stiffening option.


2020 ◽  
Vol 199 ◽  
pp. 107037 ◽  
Author(s):  
Puyang Zhang ◽  
Jingyi Li ◽  
Yi Gan ◽  
Jinfu Zhang ◽  
Xin Qi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document