scholarly journals Potential Environmental Effects of Marine Renewable Energy Development—The State of the Science

2020 ◽  
Vol 8 (11) ◽  
pp. 879
Author(s):  
Andrea E. Copping ◽  
Lenaïg G. Hemery ◽  
Dorian M. Overhus ◽  
Lysel Garavelli ◽  
Mikaela C. Freeman ◽  
...  

Marine renewable energy (MRE) harnesses energy from the ocean and provides a low-carbon sustainable energy source for national grids and remote uses. The international MRE industry is in the early stages of development, focused largely on tidal and riverine turbines, and wave energy converters (WECs), to harness energy from tides, rivers, and waves, respectively. Although MRE supports climate change mitigation, there are concerns that MRE devices and systems could affect portions of the marine and river environments. The greatest concern for tidal and river turbines is the potential for animals to be injured or killed by collision with rotating blades. Other risks associated with MRE device operation include the potential for turbines and WECs to cause disruption from underwater noise emissions, generation of electromagnetic fields, changes in benthic and pelagic habitats, changes in oceanographic processes, and entanglement of large marine animals. The accumulated knowledge of interactions of MRE devices with animals and habitats to date is summarized here, along with a discussion of preferred management methods for encouraging MRE development in an environmentally responsible manner. As there are few devices in the water, understanding is gained largely from examining one to three MRE devices. This information indicates that there will be no significant effects on marine animals and habitats due to underwater noise from MRE devices or emissions of electromagnetic fields from cables, nor changes in benthic and pelagic habitats, or oceanographic systems. Ongoing research to understand potential collision risk of animals with turbine blades still shows significant uncertainty. There has been no significant field research undertaken on entanglement of large animals with mooring lines and cables associated with MRE devices.

2020 ◽  
Vol 8 (3) ◽  
pp. 172 ◽  
Author(s):  
Andrea E. Copping ◽  
Mikaela C. Freeman ◽  
Alicia M. Gorton ◽  
Lenaïg G. Hemery

Marine renewable energy (MRE) is under development in many coastal nations, adding to the portfolio of low carbon energy sources that power national electricity grids as well as off-grid uses in isolated areas and at sea. Progress in establishing the MRE industry, largely wave and tidal energy, has been slowed in part due to uncertainty about environmental risks of these devices, including harm to marine animals and habitats, and the associated concerns of regulators and stakeholders. A process for risk retirement was developed to organize and apply knowledge in a strategic manner that considered whether specific environmental effects are likely to cause harm. The risk retirement process was tested against two key MRE stressors: effects of underwater noise from operational MRE devices on marine animals, and effects of electromagnetic fields from MRE electrical export cables on marine animals. The effects of installation of MRE devices were not accounted for in this analysis. Applying the risk retirement process could decrease the need for costly investigations of each potential effect at every new MRE project site and help move the industry beyond current barriers.


Author(s):  
Francisco Gemo Albino Francisco ◽  
Jan Sundberg

Marine renewable energy is emerging as one of the fast-growing industry in the last decades, as modern society pushes for technologies that can convert energy contained from winds, waves, tides and stream flows. The implementation of renewable energy technologies impose high demands on both structural and environmental engineering, as the energy converters have to work under extreme conditions where parameters such as sea-bottom configuration, water transparency and depth, sea-states and prevailing winds are harsh. Constant monitoring of the marine environment is crucial in order to keep this sector reliable. Active acoustics is becoming a standard tool to collect multi-dimensional data from physical, geological and biological properties of the marine environment. The Div. of Electricity of Uppsala University have been developing an environmental monitoring platform based on sonar (Sound Navigation And Raging) systems. This platform aims to monitor the installation, operation and decommissioning of marine renewable energy converters. The focus will be given the observations of behaviours of marine animals in vicinity of energy converters but also structural inspection and monitoring of MRETs. This paper describes how this multifunctional environmental monitoring platform come to existence from the design to the deployment phase.


2021 ◽  
Vol 8 ◽  
Author(s):  
Grace Chang ◽  
Genevra Harker-Klimeš ◽  
Kaustubha Raghukumar ◽  
Brian Polagye ◽  
Joseph Haxel ◽  
...  

Governments are increasingly turning toward public–private partnerships to bring industry support to improving public assets or services. Here, we describe a unique public–private collaboration where a government entity has developed mechanisms to support public and private sector advancement and commercialization of monitoring technologies for marine renewable energy. These support mechanisms include access to a range of skilled personnel and test facilities that promote rapid innovation, prove reliability, and inspire creativity in technology development as innovations move from concept to practice. The ability to iteratively test hardware and software components, sensors, and systems can accelerate adoption of new methods and instrumentation designs. As a case study, we present the development of passive acoustic monitoring technologies customized for operation in energetic waves and currents. We discuss the value of testing different systems together, under the same conditions, as well as the progression through different test locations. The outcome is multiple, complementary monitoring technologies that are well suited to addressing an area of high environmental uncertainty and reducing barriers to responsible deployment of low-carbon energy conversion systems, creating solutions for the future.


Sign in / Sign up

Export Citation Format

Share Document