scholarly journals Prescribed Performance Control of Marine Surface Vessel Trajectory Tracking in Finite-Time with Full-State Constraints and Input Saturation

2021 ◽  
Vol 9 (8) ◽  
pp. 866
Author(s):  
Xiyun Jiang ◽  
Yuanhui Wang

This manuscript mainly solves a fully actuated marine surface vessel prescribed performance trajectory tracking control problem with full-state constraints and input saturation. The entire control design process is based on a backstepping technique. The prescribed performance control is introduced to embody the analytical relationship between the transient performance and steady-state performance of the system and the parameters. Meanwhile, a new finite time performance function is introduced to ensure that the performance of the system tracking error is constrained within the preset constraints in finite time, and the full-state constraints problem of the system can be solved simultaneously in the entire control design, at the same time without introducing additional theory and parameters. To solve the non-smooth input saturation function matrix is not differentiable, the smooth function matrix is introduced to replace the non-smooth characteristics. Combining the Moore-Penrose generalized inverse matrix to design the virtual control law, the dynamic surface control is introduced to avoid the complicated virtual control derivation process, and finally the actual control law is designed using the properties of Nussbaum function. In addition, in view of the uncertainties in the system, a fractional disturbance observer is designed to estimate it. With the proposed control, the full-state will never be violated constraints, and the system tracking error satisfies transient and steady-state performance. Compared with other methods, the simulation results show the effectiveness and advantages of the proposed method.

Author(s):  
Xiaojing Qi ◽  
Wenhui Liu

In this article, the problem of adaptive finite-time control is studied for a category of nonstrict-feedback nonlinear time-delay systems with input saturation and full state constraints. The fuzzy logic systems are applied to model the unknown nonlinear terms in the systems. Then, a novel tan-type barrier Lyapunov function is adopted to overcome the problem of full state constraints. By utilizing the finite-time control theory and the backstepping technique, a finite-time fuzzy adaptive controller is designed. The controller can guarantee that the tracking error is adjusted around zero with a small neighborhood in a finite time and all the signals in the closed-loop system are bounded. Finally, two simulation examples are included to verify the validity and feasibility of the control scheme.


2018 ◽  
Vol 40 (14) ◽  
pp. 3964-3977 ◽  
Author(s):  
Chunxiao Wang ◽  
Yuqiang Wu ◽  
Zhongcai Zhang

This paper focuses on the tracking control problem for strict-feedback nonlinear systems subject to asymmetric time-varying full state constraints. Time-varying asymmetric barrier Lyapunov functions are employed to ensure time-varying constraint satisfaction. By allowing the barriers to vary with the desired trajectory in time, the initial condition requirements are relaxed. High-order coupling terms caused by backstepping are cancelled through a novel variable substitution for the first time. Besides the normal case, where the full knowledge of the system is available, we also handle scenarios of parametric uncertainties. Asymptotic tracking is achieved without violation of any constraints, and all signals in the closed-loop system are ultimately bounded. State-constrained systems with input saturation and bounded disturbances are also considered; the tracking error converges to a bounded set around zero. The performance of the asymmetric-barrier-Lyapunov-function-based control is illustrated through a numerical example.


Sign in / Sign up

Export Citation Format

Share Document