scholarly journals Quantitative Imaging Biomarkers in Age-Related Macular Degeneration and Diabetic Eye Disease: A Step Closer to Precision Medicine

2021 ◽  
Vol 11 (11) ◽  
pp. 1161
Author(s):  
Gagan Kalra ◽  
Sudeshna Sil Kar ◽  
Duriye Damla Sevgi ◽  
Anant Madabhushi ◽  
Sunil K. Srivastava ◽  
...  

The management of retinal diseases relies heavily on digital imaging data, including optical coherence tomography (OCT) and fluorescein angiography (FA). Targeted feature extraction and the objective quantification of features provide important opportunities in biomarker discovery, disease burden assessment, and predicting treatment response. Additional important advantages include increased objectivity in interpretation, longitudinal tracking, and ability to incorporate computational models to create automated diagnostic and clinical decision support systems. Advances in computational technology, including deep learning and radiomics, open new doors for developing an imaging phenotype that may provide in-depth personalized disease characterization and enhance opportunities in precision medicine. In this review, we summarize current quantitative and radiomic imaging biomarkers described in the literature for age-related macular degeneration and diabetic eye disease using imaging modalities such as OCT, FA, and OCT angiography (OCTA). Various approaches used to identify and extract these biomarkers that utilize artificial intelligence and deep learning are also summarized in this review. These quantifiable biomarkers and automated approaches have unleashed new frontiers of personalized medicine where treatments are tailored, based on patient-specific longitudinally trackable biomarkers, and response monitoring can be achieved with a high degree of accuracy.

2015 ◽  
Vol 15 (1) ◽  
Author(s):  
Raba Thapa ◽  
Sanyam Bajimaya ◽  
Govinda Paudyal ◽  
Shankar Khanal ◽  
Stevie Tan ◽  
...  

2019 ◽  
Vol 4 (1) ◽  
pp. e000273
Author(s):  
Irina Balikova ◽  
Laurence Postelmans ◽  
Brigitte Pasteels ◽  
Pascale Coquelet ◽  
Janet Catherine ◽  
...  

ObjectiveAge-related macular degeneration (ARMD) is a leading cause of visual impairment. Intravitreal injections of anti-vascular endothelial growth factor (VEGF) are the standard treatment for wet ARMD. There is however, variability in patient responses, suggesting patient-specific factors influencing drug efficacy. We tested whether single nucleotide polymorphisms (SNPs) in genes encoding VEGF pathway members contribute to therapy response.Methods and analysisA retrospective cohort of 281 European wet ARMD patients treated with anti-VEGF was genotyped for 138 tagging SNPs in the VEGF pathway. Per patient, we collected best corrected visual acuity at baseline, after three loading injections and at 12 months. We also registered the injection number and changes in retinal morphology after three loading injections (central foveal thickness (CFT), intraretinal cysts and serous neuroepithelium detachment). Changes in CFT after 3 months were our primary outcome measure. Association of SNPs to response was assessed by binomial logistic regression. Replication was attempted by associating visual acuity changes to genotypes in an independent Japanese cohort.ResultsAssociation with treatment response was detected for seven SNPs, including in FLT4 (rs55667289: OR=0.746, 95% CI 0.63 to 0.88, p=0.0005) and KDR (rs7691507: OR=1.056, 95% CI 1.02 to 1.10, p=0.005; and rs2305945: OR=0.963, 95% CI 0.93 to 1.00, p=0.0472). Only association with rs55667289 in FLT4 survived multiple testing correction. This SNP was unavailable for testing in the replication cohort. Of six SNPs tested for replication, one was significant although not after multiple testing correction.ConclusionIdentifying genetic variants that define treatment response can help to develop individualised therapeutic approaches for wet ARMD patients and may point towards new targets in non-responders.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3637-3640

Retinal vessels ID means to isolate the distinctive retinal configuration issues, either wide or restricted from fundus picture foundation, for example, optic circle, macula, and unusual sores. Retinal vessels recognizable proof investigations are drawing in increasingly more consideration today because of pivotal data contained in structure which is helpful for the identification and analysis of an assortment of retinal pathologies included yet not restricted to: Diabetic Retinopathy (DR), glaucoma, hypertension, and Age-related Macular Degeneration (AMD). With the advancement of right around two decades, the inventive methodologies applying PC supported systems for portioning retinal vessels winding up increasingly significant and coming nearer. Various kinds of retinal vessels segmentation strategies discussed by using Deep Learning methods. At that point, the pre-processing activities and the best in class strategies for retinal vessels distinguishing proof are presented.


Author(s):  
Alastair K.O. Denniston ◽  
Philip I. Murray

‘Medical retina’ provides the reader with a practical approach to the assessment and management of retinal disease. After outlining the relevant anatomy and physiology of this structure, the chapter addresses the key clinical presentations arising from retinal disease, notably age-related macular degeneration, diabetic eye disease, cystoid macular oedema, retinal vascular disease, and genetic retinal disease. Using a patient-centred approach the key clinical features, investigations and treatment (medical and surgical) are described for each condition.


Sign in / Sign up

Export Citation Format

Share Document