scholarly journals Agricultural Land Suitability Assessment Using Satellite Remote Sensing-Derived Soil-Vegetation Indices

Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 223
Author(s):  
Rubaiya Binte Mostafiz ◽  
Ryozo Noguchi ◽  
Tofael Ahamed

Satellite remote sensing technologies have a high potential in applications for evaluating land conditions and can facilitate optimized planning for agricultural sectors. However, misinformed land selection decisions limit crop yields and increase production-related costs to farmers. Therefore, the purpose of this research was to develop a land suitability assessment system using satellite remote sensing-derived soil-vegetation indicators. A multicriteria decision analysis was conducted by integrating weighted linear combinations and fuzzy multicriteria analyses in a GIS platform for suitability assessment using the following eight criteria: elevation, slope, and LST vegetation indices (SAVI, ARVI, SARVI, MSAVI, and OSAVI). The relative priorities of the indicators were identified using a fuzzy expert system. Furthermore, the results of the land suitability assessment were evaluated by ground truthed yield data. In addition, a yield estimation method was developed using indices representing influential factors. The analysis utilizing equal weights showed that 43% of the land (1832 km2) was highly suitable, 41% of the land (1747 km2) was moderately suitable, and 10% of the land (426 km2) was marginally suitable for improved yield productions. Alternatively, expert knowledge was also considered, along with references, when using the fuzzy membership function; as a result, 48% of the land (2045 km2) was identified as being highly suitable; 39% of the land (2045 km2) was identified as being moderately suitable, and 7% of the land (298 km2) was identified as being marginally suitable. Additionally, 6% (256 km2) of the land was described as not suitable by both methods. Moreover, the yield estimation using SAVI (R2 = 77.3%), ARVI (R2 = 68.9%), SARVI (R2 = 71.1%), MSAVI (R2 = 74.5%) and OSAVI (R2 = 81.2%) showed a good predictive ability. Furthermore, the combined model using these five indices reported the highest accuracy (R2 = 0.839); this model was then applied to develop yield prediction maps for the corresponding years (2017–2020). This research suggests that satellite remote sensing methods in GIS platforms are an effective and convenient way for agricultural land-use planners and land policy makers to select suitable cultivable land areas with potential for increased agricultural production.

1994 ◽  
Vol 26 (2) ◽  
pp. 265-284 ◽  
Author(s):  
F Wang

Agricultural land-suitability assessment involves the analysis of a large variety and amount of physiographic data. Geographical information systems (GISs) may facilitate suitability assessment in data collection. To generate accurate results from the data, appropriate suitability-assessment methods are required. However, the assessment methods which can currently be used with GISs, such as that developed by the United Nations Food and Agriculture Organization and the statistical pattern—classification method, have limitations which may lead to inaccurate assessment. An artificial neural network is an effective tool for pattern analysis. A neural network allows decision rules of greater complexity to be applied in pattern classification. By formulating the land-suitability-assessment problem into a pattern—classification problem, neural networks can be used to achieve results of greater accuracy. In this paper, a neural-network-based method for land-suitability assessment is discussed, and a set of neural networks is described. The integration between the neural networks and a GIS is addressed, and some experimental results are presented and analyzed.


Sign in / Sign up

Export Citation Format

Share Document