The Use of Artificial Neural Networks in a Geographical Information System for Agricultural Land-Suitability Assessment

1994 ◽  
Vol 26 (2) ◽  
pp. 265-284 ◽  
Author(s):  
F Wang

Agricultural land-suitability assessment involves the analysis of a large variety and amount of physiographic data. Geographical information systems (GISs) may facilitate suitability assessment in data collection. To generate accurate results from the data, appropriate suitability-assessment methods are required. However, the assessment methods which can currently be used with GISs, such as that developed by the United Nations Food and Agriculture Organization and the statistical pattern—classification method, have limitations which may lead to inaccurate assessment. An artificial neural network is an effective tool for pattern analysis. A neural network allows decision rules of greater complexity to be applied in pattern classification. By formulating the land-suitability-assessment problem into a pattern—classification problem, neural networks can be used to achieve results of greater accuracy. In this paper, a neural-network-based method for land-suitability assessment is discussed, and a set of neural networks is described. The integration between the neural networks and a GIS is addressed, and some experimental results are presented and analyzed.

Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 223
Author(s):  
Rubaiya Binte Mostafiz ◽  
Ryozo Noguchi ◽  
Tofael Ahamed

Satellite remote sensing technologies have a high potential in applications for evaluating land conditions and can facilitate optimized planning for agricultural sectors. However, misinformed land selection decisions limit crop yields and increase production-related costs to farmers. Therefore, the purpose of this research was to develop a land suitability assessment system using satellite remote sensing-derived soil-vegetation indicators. A multicriteria decision analysis was conducted by integrating weighted linear combinations and fuzzy multicriteria analyses in a GIS platform for suitability assessment using the following eight criteria: elevation, slope, and LST vegetation indices (SAVI, ARVI, SARVI, MSAVI, and OSAVI). The relative priorities of the indicators were identified using a fuzzy expert system. Furthermore, the results of the land suitability assessment were evaluated by ground truthed yield data. In addition, a yield estimation method was developed using indices representing influential factors. The analysis utilizing equal weights showed that 43% of the land (1832 km2) was highly suitable, 41% of the land (1747 km2) was moderately suitable, and 10% of the land (426 km2) was marginally suitable for improved yield productions. Alternatively, expert knowledge was also considered, along with references, when using the fuzzy membership function; as a result, 48% of the land (2045 km2) was identified as being highly suitable; 39% of the land (2045 km2) was identified as being moderately suitable, and 7% of the land (298 km2) was identified as being marginally suitable. Additionally, 6% (256 km2) of the land was described as not suitable by both methods. Moreover, the yield estimation using SAVI (R2 = 77.3%), ARVI (R2 = 68.9%), SARVI (R2 = 71.1%), MSAVI (R2 = 74.5%) and OSAVI (R2 = 81.2%) showed a good predictive ability. Furthermore, the combined model using these five indices reported the highest accuracy (R2 = 0.839); this model was then applied to develop yield prediction maps for the corresponding years (2017–2020). This research suggests that satellite remote sensing methods in GIS platforms are an effective and convenient way for agricultural land-use planners and land policy makers to select suitable cultivable land areas with potential for increased agricultural production.


Author(s):  
H. Liu ◽  
Q. Zhan ◽  
M. Zhan

The majority of the research on the uncertainties of spatial data and spatial analysis focuses on some specific data feature or analysis tool. Few have accomplished the uncertainties of the whole process of an application like planning, making the research of uncertainties detached from practical applications. The paper discusses the uncertainties of the geographical information systems (GIS) based land suitability assessment in planning on the basis of literature review. The uncertainties considered range from index system establishment to the classification of the final result. Methods to reduce the uncertainties arise from the discretization of continuous raster data and the index weight determination are summarized. The paper analyzes the merits and demerits of the “Nature Breaks” method which is broadly used by planners. It also explores the other factors which impact the accuracy of the final classification like the selection of class numbers, intervals and the autocorrelation of the spatial data. In the conclusion part, the paper indicates that the adoption of machine learning methods should be modified to integrate the complexity of land suitability assessment. The work contributes to the application of spatial data and spatial analysis uncertainty research on land suitability assessment, and promotes the scientific level of the later planning and decision-making.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 573 ◽  
Author(s):  
Ruhollah Taghizadeh-Mehrjardi ◽  
Kamal Nabiollahi ◽  
Leila Rasoli ◽  
Ruth Kerry ◽  
Thomas Scholten

Land suitability assessment is essential for increasing production and planning a sustainable agricultural system, but such information is commonly scarce in the semi-arid regions of Iran. Therefore, our aim is to assess land suitability for two main crops (i.e., rain-fed wheat and barley) based on the Food and Agriculture Organization (FAO) “land suitability assessment framework” for 65 km2 of agricultural land in Kurdistan province, Iran. Soil samples were collected from genetic layers of 100 soil profiles and the physical-chemical properties of the soil samples were analyzed. Topography and climate data were also recorded. After calculating the land suitability classes for the two crops, they were mapped using machine learning (ML) and traditional approaches. The maps predicted by the two approaches revealed notable differences. For example, in the case of rain-fed wheat, results showed the higher accuracy of ML-based land suitability maps compared to the maps obtained by traditional approach. Furthermore, the findings indicated that the areas with classes of N2 (≈18%↑) and S3 (≈28%↑) were higher and area with the class N1 (≈24%↓) was less predicted in the traditional approach compared to the ML-based approach. The major limitations of the study area were rainfall at the flowering stage, severe slopes, shallow soil depth, high pH, and large gravel content. Therefore, to increase production and create a sustainable agricultural system, land improvement operations are suggested.


Author(s):  
S. Kumar ◽  
S. Singh ◽  
V K Mishra

Artificial neural networks (ANN) is one of the most dynamic research and application areas for pattern classification. ANN is the branch of Artificial Intelligence (AI). The network is trained by 'n' number of algorithm like back propagation algorithm. The different combinations of performance functions are used for training the ANN. The back propagation neural network (BPNN) can be used as a highly successful algorithm for pattern classification with suitable combination of performance functions while training and learning ANN. When the maximum likelihood algorithm was compared with back propagation neural network method, the BPNN was more accurate than other algorithms. A Multilayer feed-forward neural network algorithm is also used for pattern classification. However BPNN gives more effective results than other pattern classification algorithms. Handwriting Recognition (or HWR) is the ability of a machine to receive and interpret handwritten input from different sources like paper documents, photographs, touch-screens and other input devices. Various performance functions is examined in this paper so as to get to a conclusion that which function would be better for usage in the network to produce an efficient and effective system. The training of back propagation neural network is done with the application of Offline Handwritten Character Recognition.


2015 ◽  
Vol 49 (4) ◽  
pp. 315
Author(s):  
B.P. Bhaskar ◽  
S.V. Bobade ◽  
S.S. Gaikwad ◽  
Dipak Sarkar ◽  
S.G. Anantwar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document