scholarly journals Biodiversity and Community Analysis of Plant-Parasitic and Free-Living Nematodes Associated with Maize and Other Rotational Crops from Punjab, Pakistan

Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1426
Author(s):  
Aatika Sikandar ◽  
Tabassum Ara Khanum ◽  
Yuanyuan Wang

Maize (Zea mays L.) is one of Pakistan’s essential staple food crops. Plant-parasitic nematodes (PPNs) are a significant restraint in maize production. However, free-living nematodes (FLNs) provide crucial ecological functions such as suppressing pests and nutrient mineralization. This study aimed to assess the community analysis of plant-parasitic and free-living nematodes associated with maize and other rotational crops (those cultivated in sequence with the maize in the same field) from Punjab, Pakistan. The occurrence percentage was observed per 500 g soil for each nematode genus. The present study revealed that 24 species of plant-parasitic and free-living nematodes were identified from maize crops and other rotational crops from 16 localities through Punjab, Pakistan. Nematode communities were analyzed by absolute frequency, relative frequency, relative density, and prominence value, while cluster analysis was based on the presence or absence of nematode in different localities. The overall proportion of plant-parasitic nematodes was 35%, while free-living soil nematodes recovered 65%, out of 210 samples of maize and other rotational crops. Several major genera of plant-parasitic nematodes were reported during the present study viz., Ditylenchus, Filenchus, Helicotylenchus, Hemicriconemoides, Heterodera, Hoplolaimus, Malenchus, Pratylenchus, Psilenchus, Rotylenchulus, Seinura, Telotylenchus, Tylenchorhynchus, and Xiphinema Community relationship revealed the overall dominance of Heterodera zeae, with the highest incidence (55.71%) followed by Tylenchorhynchus elegans (33.33%) and Helicotylenchus certus (24.76%). The results provide valuable information on the community structure of nematodes in maize and other rotational crops of maize in Punjab, Pakistan. Moreover, this data can be used as a preventive measure before PPN incidence results in greater losses on maize.

2016 ◽  
Vol 283 (1835) ◽  
pp. 20160942 ◽  
Author(s):  
Jinshui Zheng ◽  
Donghai Peng ◽  
Ling Chen ◽  
Hualin Liu ◽  
Feng Chen ◽  
...  

Plant-parasitic nematodes were found in 4 of the 12 clades of phylum Nematoda. These nematodes in different clades may have originated independently from their free-living fungivorous ancestors. However, the exact evolutionary process of these parasites is unclear. Here, we sequenced the genome sequence of a migratory plant nematode, Ditylenchus destructor . We performed comparative genomics among the free-living nematode, Caenorhabditis elegans and all the plant nematodes with genome sequences available. We found that, compared with C. elegans , the core developmental control processes underwent heavy reduction, though most signal transduction pathways were conserved. We also found D. destructor contained more homologies of the key genes in the above processes than the other plant nematodes. We suggest that Ditylenchus spp. may be an intermediate evolutionary history stage from free-living nematodes that feed on fungi to obligate plant-parasitic nematodes. Based on the facts that D. destructor can feed on fungi and has a relatively short life cycle, and that it has similar features to both C. elegans and sedentary plant-parasitic nematodes from clade 12, we propose it as a new model to study the biology, biocontrol of plant nematodes and the interaction between nematodes and plants.


Nematology ◽  
2020 ◽  
pp. 1-17 ◽  
Author(s):  
Tim C. Thoden ◽  
Mariam A. Alkader ◽  
John A. Wiles

Summary Currently a renaissance in chemical nematicides is taking place with novel products like Nimitz® (a.s. fluensulfone), Velum Prime® (a.s. fluopyram) and Salibro™ (a.s. fluazaindolizine – Reklemel™ active) entering the marketplace. Although a considerable amount of published data is already available on their laboratory and field impact on plant-parasitic nematodes, little is understood of their compatibility with the beneficial or free-living nematodes that are part of the soil health network. In a range of laboratory studies, the effects of these nematicides on the vitality and reproduction of several species was tested, including both cosmopolitan free-living nematodes (Acrobeloides, Cruznema, Panagrobelus) as well as commercially applied entomopathogenic nematodes (Steinernema, Heterorhabditis). Within aqueous exposure and agar plate in vitro assays, species sensitivity to those nematicides differed significantly but their fitness (vitality and reproduction; infectivity to insect hosts) was generally not adversely impacted by concentrations of 5-50 ppm (a.s.) of Salibro. Even at 250 ppm (a.s.) of Salibro only some species of the bacterial-feeding species showed some negative impact. By contrast, both Nimitz at 50 ppm (a.s.) and Velum at 5 ppm (a.s.) consistently demonstrated stronger adverse impacts. In second level soil drenching assays, either no, or occasionally slight, adverse effects on the natural community of free-living nematodes were observed if soils were drenched with different volumes of Salibro at 5-50 ppm (a.s.), while relatively stronger reductions were measured within the plant-parasitic species (especially root-knot nematodes). Both Nimitz and Vydate (a.s. oxamyl) showed some degree of compatibility at 5 and 25 ppm (a.s.), respectively, which was generally higher than for Velum Prime at 5 ppm (a.s.). Overall, these data indicate that, when used at common field rates, Salibro will be one of the best options as part of integrated nematode management programmes where the use of chemical nematicides is required.


2011 ◽  
Vol 48 (2) ◽  
pp. 124-136 ◽  
Author(s):  
V. Čermák ◽  
V. Gaar ◽  
L. Háněl ◽  
K. Široká

AbstractComposition and vertical distribution of soil nematode communities within soil profile were investigated in eight hop gardens in Czech Republic. In total, the presence of 78 nematode genera was confirmed. Genus Drilocephalobus (Coomans & Coomans, 1990) is new for fauna of the Czech Republic. The highest abundance of soil nematodes was found at a depth of 0–10 cm and declined with increasing depth of soil profile. The most dominant genus was Bitylenchus, followed by genera Acrobeloides, Ditylenchus, Chiloplacus and Cervidelus. Ten genera of plant parasitic nematodes were recorded: Bitylenchus (with prevalence of B. dubius), Helicotylenchus, Heterodera (with absolute prevalence of H. humuli), Geocenamus, Longidorella, Longidorus (only L. elongatus), Merlinius (with prevalence of M. brevidens), Paratylenchus and Pratylenchus. Low population densities of predators and omnivores, low values of the community indices (MI, ΣMI, SI, and CI), and high values of NCR, EI, and PPI/MI ratio indicated disturbed nematode communities in hop gardens and bacteria-dominated decomposition pathways in the soil food web.


2021 ◽  
Vol 21 (2) ◽  
pp. 134-143
Author(s):  
Nabilah Nabilah ◽  
I Gede Swibawa ◽  
Radix Suharjo ◽  
Yuyun Fitriana

Diversity and abundance of nematodes in guava (Psidium guajava L.) cultivation in Lampung. Crystal guava agroecosystem is inhabited by many species of plant parasitic nematodes. However, information regarding this topic was still limited. This study aimed to understand the species dominancy of nematodes in crystal guava cultivation in Lampung. Sampling was carried out in three locations of guava crystal plantations: Lampung Timur, Lampung Tengah, and Tanggamus. The laboratory analysis was done at the Plant Pest Science Laboratory and Agricultural Biotechnology Laboratory, Universitas Lampung. The study was conducted in December 2019 – July 2020. Nematodes were identified to the level of the genus. The Prominance value (PV) was used to assess the nematodes genus dominancy. The results showed that the nematodes inhabiting the crystal guava agro-ecosystem in Lampung was both plant parasitic and free-living nematodes. The plant parasitic nematodes were identified as Meloidogyne, Aphelenchus, Hemicriconemoides, Tylenchus, Aphelenchoides, and Xiphinema, while free-living nematodes was Rhabditis, Dorylaimine, Dorylaimus, and Mononchus. The dominant plant parasitic nematode was Meloidogyne and the dominant free-living nematode was Rhabditis. The abundance of Meloidogyne /300 mL of soil was 351.47 individuals in Lampung Timur, 124.27 individuals in Lampung Tengah, and 82.18 individuals in Tanggamus. The dominant free-living nematode in the three locations was Rhabditis.


Sign in / Sign up

Export Citation Format

Share Document