nutrient mineralization
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 30)

H-INDEX

14
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Gabriela Musin ◽  
María Victoria Torres ◽  
Débora de Azevedo Carvalho

The Metabolic Theory of Ecology (MET) and the Ecological Stoichiometry Theory (EST) are central and complementary in the consumer-driven recycling conceptual basis. The comprehension of physiological processes of organisms at different levels of organizations is essential to explore and predict nutrient recycling behavior in different scenarios, and to design integrated productive systems that efficiently use the nutrient inputs through an adjusted mass balance. We fed with fish-feed three species of decapods from different families and with aquacultural potential to explore the animal-mediated nutrient dynamic and its applicability in productive systems. We tested whether physiological (body mass, body elemental content), ecological (diet), taxonomic and experimental (time of incubation) variables predicts N and P excretion rates and ratios across and within taxa. We also analysed body mass and body elemental content independently as predictors of N and P excretion of decapods across, among and within taxa. Finally, we verified if body content scales allometrically across and within taxa and if differed among taxa. Body mass and taxonomic identity predicted nutrient excretion rates both across and within taxa. When physiological variables were analysed independently, body size best predicted nutrient mineralization in both scales of analyses. Regarding body elemental content, only body P content scaled negatively with body mass across taxa. Results showed higher N-requirements and lower C:N of prawns than anomurans and crabs. The role of crustaceans as nutrient recyclers depends mainly on the species and body mass, and should be considered to select complementary species that efficiently use feed resources. Prawns need more protein in their feed and might be integrated with fish of higher N-requirements, while crabs and anomurans, with fish of lower N-requirements. Our study contributed to the background of MTE and EST through empirical data obtained from decapods and provided useful information to achieve more efficient aquaculture integration systems.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1426
Author(s):  
Aatika Sikandar ◽  
Tabassum Ara Khanum ◽  
Yuanyuan Wang

Maize (Zea mays L.) is one of Pakistan’s essential staple food crops. Plant-parasitic nematodes (PPNs) are a significant restraint in maize production. However, free-living nematodes (FLNs) provide crucial ecological functions such as suppressing pests and nutrient mineralization. This study aimed to assess the community analysis of plant-parasitic and free-living nematodes associated with maize and other rotational crops (those cultivated in sequence with the maize in the same field) from Punjab, Pakistan. The occurrence percentage was observed per 500 g soil for each nematode genus. The present study revealed that 24 species of plant-parasitic and free-living nematodes were identified from maize crops and other rotational crops from 16 localities through Punjab, Pakistan. Nematode communities were analyzed by absolute frequency, relative frequency, relative density, and prominence value, while cluster analysis was based on the presence or absence of nematode in different localities. The overall proportion of plant-parasitic nematodes was 35%, while free-living soil nematodes recovered 65%, out of 210 samples of maize and other rotational crops. Several major genera of plant-parasitic nematodes were reported during the present study viz., Ditylenchus, Filenchus, Helicotylenchus, Hemicriconemoides, Heterodera, Hoplolaimus, Malenchus, Pratylenchus, Psilenchus, Rotylenchulus, Seinura, Telotylenchus, Tylenchorhynchus, and Xiphinema Community relationship revealed the overall dominance of Heterodera zeae, with the highest incidence (55.71%) followed by Tylenchorhynchus elegans (33.33%) and Helicotylenchus certus (24.76%). The results provide valuable information on the community structure of nematodes in maize and other rotational crops of maize in Punjab, Pakistan. Moreover, this data can be used as a preventive measure before PPN incidence results in greater losses on maize.


2021 ◽  
Vol 288 (1960) ◽  
Author(s):  
Jie Hu ◽  
Tianjie Yang ◽  
Ville-Petri Friman ◽  
George A. Kowalchuk ◽  
Yann Hautier ◽  
...  

Plant growth depends on a range of functions provided by their associated rhizosphere microbiome, including nutrient mineralization, hormone co-regulation and pathogen suppression. Improving the ability of plant-associated microbiomes to deliver these functions is thus important for developing robust and sustainable crop production. However, it is yet unclear how beneficial effects of probiotic microbial inoculants can be optimized and how their effects are mediated. Here, we sought to enhance tomato plant growth by targeted introduction of probiotic bacterial consortia consisting of up to eight plant-associated Pseudomonas strains. We found that the effect of probiotic consortium inoculation was richness-dependent: consortia that contained more Pseudomonas strains reached higher densities in the tomato rhizosphere and had clearer beneficial effects on multiple plant growth characteristics. Crucially, these effects were best explained by changes in the resident community diversity, composition and increase in the relative abundance of initially rare taxa, instead of introduction of plant-beneficial traits into the existing community along with probiotic consortia. Together, our results suggest that beneficial effects of microbial introductions can be driven indirectly through effects on the diversity and composition of the resident plant rhizosphere microbiome.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254188
Author(s):  
Suwen Lin ◽  
Lokanadha Rao Gunupuru ◽  
Raphael Ofoe ◽  
Roksana Saleh ◽  
Samuel Kwaku Asiedu ◽  
...  

A combination of vermicast and sawdust mixed medium is commonly used in horticulture, but the added benefit of microbial inoculation and mechanism of nutrient availability are unknown. This study was done to determine nutrient mineralization and nutrient release patterns of different combinations or a mix of vermicast-sawdust growing media amended with or without Trichoderma viride (105 spores/g). The mixed-media treatments were (1) 80% vermicast+20% sawdust; (2) 60% vermicast+40% sawdust; (3) 40% vermicast+60% sawdust; (4) 20% vermicast+80% sawdust; and (5) sawdust alone (control). Total dissolved solids, electric conductivity and salinity increased with each sampling time following submergence in deionized. Nutrients released from media without T. viride were significantly higher than the corresponding media with added T. viride. Overall, the starting total nitrogen of the different media did not change during the incubation period, but nitrate-nitrogen was reduced to a negligible amount by the end of day 30 of incubation. A repeated measures analysis showed a significant effect of Time*T. viride*Treatment on total dissolved solids. Redundancy analysis demonstrated a positive and strong association between media composed of ≥40% vermicast and ≤60% sawdust with or without T. viride and mineral nutrients released, electrical conductivity, total dissolved solids and salinity. These findings suggest that fast-growing plants may benefit from 40% to 60% vermicast added to 40% to 60% sawdust without T. viride while slow-growing plants can benefit from the same mixed medium combined with the addition of T. viride. Further investigation is underway to assess microbial dynamics in the mixed media and their influence on plant growth.


2021 ◽  
Author(s):  
CANDACE G CARTER ◽  
Meagan E. Schipanski

Abstract Aims Improving crop utilization of N from soil organic matter (SOM) has received limited attention despite evidence that half of field crop N is often derived from SOM mineralization. We explored the effects of rapeseed (Brassica napus) genotypic diversity on N uptake from organic and inorganic N sources. Methods In a greenhouse study, we applied dual 15N labeled ammonium-nitrate fertilizer to examine N uptake patterns of rapeseed in different N environments. Ten varieties were grown in a full factorial experiment with four treatments, including combinations of high and low N fertilizer and SOM. Results While we found limited varietal differences in N uptake dynamics, SOM was an important N source across all varieties even as N fertilizer availability increased. High SOM/High Fertilizer treatment plants obtained 64% of N from SOM, while plants grown with High SOM/Low Fertilizer obtained 89% of total N from SOM. High N fertilizer additions increased overall N uptake from SOM by 42% relative to low N fertilizer treatments. In contrast, microbial enzyme activity related to nutrient mineralization was suppressed by 16–58% in high N fertilizer relative to low fertilizer treatments. Conclusions Integrating plant reliance on SOM-N sources into crop breeding and system management has the potential to improve productivity and overall N use efficiency.


2021 ◽  
Author(s):  
Jie Hu ◽  
Tianjie Yang ◽  
Ville Petri Friman ◽  
George A. Kowalchuk ◽  
Yann Hautier ◽  
...  

Plant growth depends on a range of functions provided by their associated rhizosphere microbiome, including nutrient mineralization, hormone co-regulation and pathogen suppression. Improving the ability of plant associated microbiome to deliver these functions is thus important for developing robust and sustainable crop production. However, it is yet unclear how beneficial effects of probiotic microbial inoculants can be optimised and how they are mediated. Here, we sought to enhance the tomato plant growth by targeted introduction of probiotic bacterial consortia consisting of up to eight plant-associated Pseudomonas strains. We found that the effect of probiotic consortium inoculation was richness-dependent: consortia that contained more Pseudomonas strains, reached higher densities in the tomato rhizosphere and had clearer beneficial effects on multiple plant growth characteristics. Crucially, these effects were best explained by changes in the resident community diversity, composition and increase in the relative abundance of initially rare taxa, instead of introduction of plant-beneficial traits into the existing community along with probiotic consortia. Together, our results suggest that beneficial effects of microbial introductions can be driven indirectly through effects on the diversity and composition of resident plant rhizosphere microbiome.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ghulam Abbas Shah ◽  
Jahangir Ahmed ◽  
Zahid Iqbal ◽  
Fayyaz-ul- Hassan ◽  
Muhammad Imtiaz Rashid

AbstractRecently, there is an increasing trend of using metallic nanoparticles (NPs) in agriculture due to their potential role in remediating soil pollution and improving nutrient utilization from fertilizers. However, evidence suggested that these NPs were toxic to the soil life and their associated functions, and this toxicity depended on their dose, type, and size. Here, a dose-dependent (5, 50, and 100 mg kg−1 soil) toxicity of NiO NPs on poultry manure (PM: 136 kg N ha−1) decomposition, nutrient mineralization, and herbage N uptake were studied in a standard pot experiment. The NPs doses were mixed with PM and applied in soil-filled pots where then ryegrass was sown. Results revealed that the lowest dose significantly increased microbial biomass (C and N) and respiration from PM, whereas a high dose reduced these parameters. This decrease in such parameters by the highest NPs dose resulted in 13 and 41% lower soil mineral N and plant available K from PM, respectively. Moreover, such effects resulted in 32 and 35% lower herbage shoot and root N uptakes from PM in this treatment. Both intermediate and high doses decreased herbage shoot Ni uptake from PM by 33 and 34%, respectively. However, all NPs doses did not influence soil Ni content from PM. Hence, our results indicated that high NPs dose (100 mg kg−1) was toxic to decomposition, nutrient mineralization, and herbage N uptake from PM. Therefore, such NiONPs toxicity should be considered before recommending their use in agriculture for soil remediation or optimizing nutrient use efficiency of fertilizers.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
R. Iestyn Woolway ◽  
Sapna Sharma ◽  
Gesa A. Weyhenmeyer ◽  
Andrey Debolskiy ◽  
Malgorzata Golub ◽  
...  

AbstractOne of the most important physical characteristics driving lifecycle events in lakes is stratification. Already subtle variations in the timing of stratification onset and break-up (phenology) are known to have major ecological effects, mainly by determining the availability of light, nutrients, carbon and oxygen to organisms. Despite its ecological importance, historic and future global changes in stratification phenology are unknown. Here, we used a lake-climate model ensemble and long-term observational data, to investigate changes in lake stratification phenology across the Northern Hemisphere from 1901 to 2099. Under the high-greenhouse-gas-emission scenario, stratification will begin 22.0 ± 7.0 days earlier and end 11.3 ± 4.7 days later by the end of this century. It is very likely that this 33.3 ± 11.7 day prolongation in stratification will accelerate lake deoxygenation with subsequent effects on nutrient mineralization and phosphorus release from lake sediments. Further misalignment of lifecycle events, with possible irreversible changes for lake ecosystems, is also likely.


Sign in / Sign up

Export Citation Format

Share Document