scholarly journals Effects of Polyacrylic Acid Pre-Treatment on Bonded-Dentine Interfaces Created with a Modern Bioactive Resin-Modified Glass Ionomer Cement and Subjected to Cycling Mechanical Stress

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1884 ◽  
Author(s):  
Salvatore Sauro ◽  
Vicente Faus-Matoses ◽  
Irina Makeeva ◽  
Juan Manuel Nuñez Martí ◽  
Raquel Gonzalez Martínez ◽  
...  

Objectives: Resin-modified glass ionomer cements (RMGIC) are considered excellent restorative materials with unique therapeutic and anti-cariogenic activity. However, concerns exist regarding the use of polyacrylic acid as a dentine conditioner as it may influence the bonding performance of RMGIC. The aim of this study was to evaluate the effect of different protocols for cycling mechanical stress on the bond durability and interfacial ultramorphology of a modern RMGIC applied to dentine pre-treated with/without polyacrylic acid conditioner (PAA). Methods: The RMGIC was applied onto human dentine specimens prepared with silicon-carbide (SiC) abrasive paper with or without the use of a PAA conditioner. The specimens were immersed in deionised water for 24 h then divided in 3 groups. The first group was cut into matchsticks (cross-sectional area of 0.9 mm2) and tested immediately for microtensile bond strength (MTBS). The second was first subjected to load cycling (250,000 cycles; 3 Hz; 70 N) and then cut into matchsticks and tested for MTBS. The third group was subjected to load cycling (250,000 cycles; 3 Hz; 70 N), cut into matchsticks, and then immersed for 8 months storage in artificial saliva (AS); these were finally tested for MTBS. The results were analysed statistically using two-way ANOVA and the Student–Newman–Keuls test (α = 0.05). Fractographic analysis was performed using FE-SEM, while further RMCGIC-bonded dentine specimens were aged as previously described and used for interfacial ultramorphology characterisation (dye nanoleakage) using confocal microscopy. Results: The RMGIC applied onto dentine that received no pre-treatment (10% PAA gel) showed no significant reduction in MTBS after load cycling followed by 8 months of storage in AS (p > 0.05). The RMGIC–dentine interface created in PAA-conditioned SiC-abraded dentine specimens showed no sign of degradation, but with porosities within the bonding interface both after load cycling and after 8 months of storage in AS. Conversely, the RMGIC–dentine interface of the specimens with no PAA pre-treatment showed no sign of porosity within the interface after any of the aging protocols, although some bonded-dentine interfaces presented cohesive cracks within the cement after prolonged AS storage. However, the specimens of this group showed no significant reduction in bond strength (p < 0.05) after 8 months of storage in AS or load cycling (p > 0.05). After prolonged AS storage, the bond strength value attained in RMGIC–dentine specimens created in PAA pre-treated dentine were significantly higher than those observed in the specimens created with no PAA pre-treatment in dentine. Conclusions: PAA conditioning of dentine prior to application of RMGIC induces no substantial effect on the bond strength after short-term storage, but its use may increase the risk of collagen degradation at the bonding interface after prolonged aging. Modern RMGIC applied without PAA dentine pre-treatment may have greater therapeutic synergy with saliva during cycle occlusal load, thereby enhancing the remineralisation and protection of the bonding interface.

2015 ◽  
Vol 18 (2) ◽  
pp. 31
Author(s):  
Flavia Pardo Salata Nahsan ◽  
Martha Beteghelli Michielin ◽  
Luciana Mendonça Da Silva ◽  
Camila Moreira Machado ◽  
Andréa Mello De Andrade ◽  
...  

<p><strong>Objective</strong>: Even resin composites and glass-ionomer cements are widely used for dental cervical region restorations, under erosive condition they can wear out quickly. This study aimed to compare, by means of bond strength by microshear, the performance of a resin composite (RC) and a resin-modified glass-ionomer cement (RMGIC) to eroded dentin and its association with 2% chlorhexidine up to 6 months. <strong>Material</strong> <strong>and</strong> <strong>Methods</strong>:. Eighty  sound third molars teeth were cutt to obtain flat coronal dentin, which were subsequently embedded in self-curing acrylic resin circular molds exposing only this surface available. Teeth were divided into two groups, according to the treatment with the Adper Single Bond 2 + RC Filtek Z250 (Z) or the RMGIC Vitremer (V). Half of the specimens were immersed in artificial saliva-AS for 24 hours (control groups) and half subjected to 3x/1 minute daily immersion in Regular Coca Cola ®-RC for 5 days. Half of the specimens for each described condition were treated with water and half with 2% chlorhexidine for 1 minute prior the restoration. For all groups, the specimens were stored in artificial saliva weekly renewed up to tests. The bonding strength was evaluated by  microshear test after 1 month and 6 months . Data, in normal distribution, were analyzed with 3-way ANOVA and Tukey (p &lt;0.05). <strong>Results</strong>: Challenge factors, materials and time were statistically significant.. Restorations with Z showed significantly higher bond strength compared to V in all situations. There was a reduction in bond strength values over time for all tested conditions. The prior application of 2% chlorhexidine was able to preserve the Z bond strength between 1 and 6 months, but this factor was not statistically significant. <strong>Conclusion</strong>: For eroded dentin, the use of resin composite seems presents greater bond strength compared to resin-modified glass-material, disregarding their association to chlorhexidine or not.</p>


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 722 ◽  
Author(s):  
Salvatore Sauro ◽  
Irina Makeeva ◽  
Vicente Faus-Matoses ◽  
Federico Foschi ◽  
Massimo Giovarruscio ◽  
...  

This study aimed at evaluating the microtensile bond strength (MTBS) and fractographic features of dentine-bonded specimens created using universal adhesives applied in etch-and-rinse (ER) or self-etching (SE) mode in combination with modern ion-releasing resin-modified glass-ionomer cement (RMGIC)-based materials after load cycling and artificial saliva aging. Two universal adhesives (FTB: Futurabond M+, VOCO, Germany; SCU: Scotchbond Universal, 3M Oral Care, USA) were used. Composite build-ups were made with conventional nano-filled composite (AURA, SDI, Australia), conventional resin-modified glass ionomer cement (Ionolux VOCO, Germany), or a (RMGIC)-based composite (ACTIVA, Pulpdent, USA). The specimens were divided in three groups and immersed in deionized water for 24 h, load-cycled (350,000 cycles; 3 Hz; 70 N), or load-cycled and cut into matchsticks and finally immersed for 8 months in artificial saliva (AS). The specimens were cut into matchsticks and tested for microtensile bond strength. The results were analyzed statistically using three-way ANOVA and Fisher’s LSD post hoc test (p < 0.05). Fractographic analysis was performed through stereomicroscope and FE-SEM. FTB showed no significant drop in bond strength after aging. Unlike the conventional composite, the two RMGIC-based materials caused no bond strength reduction in SCU after load-cycle aging and after prolonged aging (8 months). The SEM fractographic analysis showed severe degradation, especially with composite applied on dentine bonded with SCU in ER mode; such degradation was less evident with the two GIC-based materials. The dentine-bond longevity may be influenced by the composition rather than the mode of application (ER vs. SE) of the universal adhesives. Moreover, the choice of the restorative material may play an important role on the longevity of the finalrestoration. Indeed, bioactive GIC-based materials may contribute to maintain the bonding performance of simplified universal adhesives over time, especially when these bonding systems are applied in ER mode.


2010 ◽  
Vol 21 (6) ◽  
pp. 533-537 ◽  
Author(s):  
Ivan Toshio Maruo ◽  
Juliana Godoy-Bezerra ◽  
Armando Yukio Saga ◽  
Orlando Motohiro Tanaka ◽  
Hiroshi Maruo ◽  
...  

The aim of this study was to assess the influence of etching and light-curing time on the shear bond strength (SBS) and adhesive remnant index (ARI) of a resin-modified glass ionomer cement (RMGIC) upon debonding of orthodontic brackets. Sixty-eight bovine permanent incisors were obtained and embedded in acrylic resin. Edgewise metallic brackets were bonded to the teeth with Fuji Ortho LC RMGIC. The specimens were randomly assigned to 4 groups, using the following etching and light-curing times: G1: 10% polyacrylic acid and 40 s (control); G2: 37% phosphoric acid and 40 s; G3: 10% polyacrylic acid and 50 s; and G4: 37% phosphoric acid and 50 s. Shear test was performed at 0.5 mm/min and the ARI was assessed. G2 (3.6 ± 0.98 MPa) presented significantly higher (p<0.05) SBS than G1 (2.76 ± 0.86 MPa) and G4 (2.86 ± 0.68 MPa), and there was no statistically significant difference (p>0.05) between G2 and G3 (2.94 ± 0.67 MPa). ARI presented prevalence of scores 2 and 3 in all groups. RMGIC SBS enhanced with 37% phosphoric acid etching and 40 s light-curing time, but this did not occur when the light-curing time was increased, regardless of the acid used. RMGIC presented prevalence of failures at the adhesive/bracket interface.


2020 ◽  
Vol 9 (4) ◽  
pp. 319-325
Author(s):  
Zady J. Torres-Rivera ◽  
◽  
Juan Augusto Fernández-Tarazona ◽  
Alex Sandro de Souza ◽  
◽  
...  

Purpose: This in vitro study aimed to evaluate the influence of dentin conditioning with polyacrylic acid on the shear bond strength of the nano-filled resin-modified glass ionomer cement Ketac N100 (3MESPE). Material and methods: Eighteen bovine incisors were randomly divided into two groups (n=18): group 1, without dentin surface treatment, and group 2, with dentin surface treated with 10% polyacrylic acid for 15 seconds. In both groups the primer was applied before the application of the nano-filled resin-modified glass ionomer cement (Ketac N100) and light-cured for 20 seconds. After 24 hours, the specimens were submitted to thermocycling for 350 cycles, and the teeth were immersed in distilled water at room temperature. After 24 hours, specimens were tested for shear bond strength at 1mm/minute crosshead speed. The collected data were analyzed using the non-parametric test of Mann Whitney (p<0.05). Results: There was a significant difference in shear bond strength values between the treatment and control groups, the group with dentin conditioning with 10% polyacrylic acid showed higher shear strength values than the group without dentin treatment. Conclusion: Application of 10% polyacrylic acid on dentin increases the shear bond strength values of nano-filled resin-modified glass ionomer cement.


2020 ◽  
Vol 8 (02) ◽  
pp. 49-54
Author(s):  
Salil Mehra ◽  
Ashu K. Gupta ◽  
Bhanu Pratap Singh ◽  
Mandeep Kaur ◽  
Ashwath Kumar

Abstract Introduction The aim of the current study was to evaluate shear bond strength of resin composite bonded to Theracal LC, Biodentine, and resin-modified glass ionomer cement (RMGIC) using universal adhesive and mode of fracture. Materials and Methods A total of 50 caries-free maxillary and mandibular molars extracted were taken; occlusal cavities were prepared, mounted in acrylic blocks, and divided into five groups based on the liner used. Group 1: Biodentine liner placed into the cavity and bonding agent and resin composite applied after 12 minutes. Group 2: Biodentine liner placed into the cavity and bonding agent and resin composite applied after 14 days. Group 3: RMGIC liner placed into the cavity and bonding agent and resin composite applied immediately. Group 4: RMGIC liner placed into the cavity and bonding agent and resin composite applied after 7 days. Group 5: Theracal LC liner placed into the cavity and bonding agent and resin composite applied immediately. Each sample was bonded to resin composite using universal adhesive. Shear bond strength analysis was performed at a cross-head speed of 0.1 mm/min. Statistical Analysis  Statistical analysis was performed with one-way analysis of variance and posthoc Bonferroni test using SPSS version 22.0. Results and Conclusion Biodentine liner when bonded immediately to resin composite showed minimum shear bond strength. RMGIC when bonded to resin composite after 7 days showed maximum shear bond strength. Mode of fracture was predominantly cohesive in groups having Biodentine and Theracal LC as liner.


2010 ◽  
Vol 33 (2) ◽  
pp. 180-184 ◽  
Author(s):  
H. Y. Cheng ◽  
C. H. Chen ◽  
C. L. Li ◽  
H. H. Tsai ◽  
T. H. Chou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document