scholarly journals Investigation of Cutting Force in Longitudinal-Torsional Ultrasonic-Assisted Milling of Ti-6Al-4V

Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1955 ◽  
Author(s):  
Niu ◽  
Jiao ◽  
Zhao ◽  
Gao

In this study, we propose a longitudinal-torsion ultrasonic-assisted milling (LTUM) machining method for difficult-to-cut materials—such as titanium alloy—in order to realize anti-fatigue manufacturing. In addition, a theoretical prediction model of cutting force is established. To achieve this, we used the cutting edge trajectory of LTUM to reveal the difference in trajectory between LTUM and traditional milling (TM). Then, an undeformed chip thickness (UCT) model of LTUM was constructed. From this, the cutting force model was able to be established. A series of experiments were subsequently carried out to verify this LTUM cutting force model. Based on the established model, the influence of several parameters on cutting force was analyzed. The results showed that the established theoretical model of cutting force was in agreement with the experimental results, and that, compared to TM, the cutting force was lower in LTUM. Specifically, the cutting force in the feed direction, Fx, decreased by 24.8%, while the cutting force in the width of cut direction Fy, decreased by 29.9%.

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Zhaozhao Lei ◽  
Xiaojun Lin ◽  
Gang Wu ◽  
Luzhou Sun

In order to improve the machining quality and efficiency and optimize NC machining programming, based on the existing cutting force models for ball-end, a cutting force prediction model of free-form surface for ball-end was established. By analyzing the force of the system during the cutting process, we obtained the expression equation of the instantaneous undeformed chip thickness during the milling process and then determined the rule of the influence of the lead angle and the tilt angle on the instantaneous undeformed chip thickness. It was judged whether the cutter edge microelement is involved in cutting, and the algorithm flow chart is given. After that, the cutting force prediction model of free-form surface for ball-end and pseudocodes for cutting force prediction were given. MATLAB was used to simulate the prediction force model. Finally, through the comparative analysis experiment of the measured cutting force and the simulated cutting force, the experimental results are basically consistent with the theoretical prediction results, which proves that the model established in this paper can accurately predict the change of the cutting force of the ball-end cutter in the process of milling free-form surface, and the error of the cutting force prediction model established in this paper is reduced by 15% compared with the traditional cutting force prediction model.


2013 ◽  
Vol 681 ◽  
pp. 186-190
Author(s):  
Jian Min Zuo ◽  
Ling Wu ◽  
Mu Lan Wang ◽  
Bao Sheng Wang ◽  
Jun Ming Hou ◽  
...  

This paper aims at studying a method to identify the cutter runout parameters for end milling. An analytical cutting force model for end milling is proposed to predict cutting force. The cutting force is separated into a nominal component independent of the cutter runout and a perturbation component induced by the cutter runout. Using the cutting force acting on the and directions to calculate the difference between the cutting radius of the adjacent tooth. Then runout parameters are obtained after a series of data processing. The simulation and the experimented results are made to validate the presented methods.


2021 ◽  
Author(s):  
Vipul Shah

Vibration can cause problems when it occurs during machining, especially if it cannot be damped and continuous to increase, a phenomenon known as chatter. This thesis project focuses on reviewing the state-of-the-arts work in chatter research, identifying a reliable mechanistic dynamic cutting force model for orthogonal cutting operations when machining slender shafts, carrying out a series of experiments on uniform and stepped workpiece[s], and validating the theoretical predictions of chatter onset conditions against experimental results.


2000 ◽  
Vol 123 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Hsi-Yung Feng ◽  
Ning Su

This paper presents an improved mechanistic cutting force model for the ball-end milling process. The objective is to accurately model the cutting forces for nonhorizontal and cross-feed cutter movements in 3D finishing ball-end milling. Main features of the model include: (1) a robust cut geometry identification method to establish the complicated engaged area on the cutter; (2) a generalized algorithm to determine the undeformed chip thickness for each engaged cutting edge element; and (3) a comprehensive empirical chip-force relationship to characterize nonhorizontal cutting mechanics. Experimental results have shown that the present model gives excellent predictions of cutting forces in 3D ball-end milling.


2006 ◽  
Vol 2 (2) ◽  
pp. 167-179 ◽  
Author(s):  
R. P. H. Faassen ◽  
N. van de Wouw ◽  
H. Nijmeijer ◽  
J. A. J. Oosterling

The efficiency of the high-speed milling process is often limited by the occurrence of chatter. In order to predict the occurrence of chatter, accurate models are necessary. In most models regarding milling, the cutter is assumed to follow a circular tooth path. However, the real tool path is trochoidal in the ideal case, i.e., without vibrations of the tool. Therefore, models using a circular tool path lead to errors, especially when the cutting angle is close to 0 or π radians. An updated model for the milling process is presented which features a model of the undeformed chip thickness and a time-periodic delay. In combination with this tool path model, a nonlinear cutting force model is used, to include the dependency of the chatter boundary on the feed rate. The stability of the milling system, and hence the occurrence of chatter, is investigated using both the traditional and the trochoidal model by means of the semi-discretization method. Due to the combination of this updated tool path model with a nonlinear cutting force model, the periodic solution of this system, representing a chatter-free process, needs to be computed before the stability can be investigated. This periodic solution is computed using a finite difference method for delay-differential equations. Especially for low immersion cuts, the stability lobes diagram (SLD) using the updated model shows significant differences compared to the SLD using the traditional model. Also the use of the nonlinear cutting force model results in significant differences in the SLD compared to the linear cutting force model.


2010 ◽  
Vol 33 ◽  
pp. 356-362 ◽  
Author(s):  
Xionig Ying Pu ◽  
Wei Jun Liu ◽  
Ji Bin Zhao

A new cutting force model for peripheral milling is presented based-on a developed algorithm for instantaneous undeformed chip surface with NURBS. To decrease the number of the differential element, the contact cutting edges of end-milling cutter with the part and the chip thickness curve are represented by NURBS helix, and the instantaneous undeformed chip is constructed as a ruled surface with the two curves. The cutting force generated by the edge contact length and the uncut chip area. Using the cutting coefficients from Budak[1] , the cutting-force model verified by simulation. The simulation results indicate that new cutting-force model predict the cutting forces in peripheral milling accurately.


Author(s):  
Shih-Ming Wang ◽  
Zou-Sung Chiang ◽  
Da-Fun Chen

To enhance the implementation of micro milling, it is necessary to clearly understand the dynamic characteristics of micro milling so that proper machining parameters can be used to meet the requirements of application. By taking the effect of minimum chip thickness and rake angle into account, a new cutting force model of micro-milling which is function the instantaneous cutting area and machining coefficients was developed. According to the instantaneous rotation trajectory of cutting edge, the cutting area projected to xy-plane was determined by rectangular integral method, and used to solve the instantaneous cutting area. After the machining coefficients were solved, the cutting force of micro-milling for different radial depths of cut and different axial depths of cut can be predicted. The results of micro-milling experimental have shown that the force model can predict the cutting force accurately by which the optimal cutting parameters can be selected for micro-milling application.


Sign in / Sign up

Export Citation Format

Share Document