scholarly journals Reduced Graphene Oxides Decorated NiSe Nanoparticles as High Performance Electrodes for Na/Li Storage

Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3709 ◽  
Author(s):  
Yan Liu ◽  
Xianshui Wang

A facile, one-pot hydrothermal method was used to synthesize Nickel selenide (NiSe) nanoparticles decorated with reduced graphene oxide nanosheets (rGO), denoted as NiSe/rGO. The NiSe/rGO exhibits good electrochemical performance when tested as anodes for Na-ion batteries (SIBs) and Li-ion batteries (LIBs). An initial reversible capacity of 423 mA h g−1 is achieved for SIBs with excellent cyclability (378 mA h g−1 for 50th cycle at 0.05 A g−1). As anode for LIBs, it delivers a remarkable reversible specific capacity of 1125 mA h g−1 at 0.05 A g−1. The enhanced electrochemical performance of NiSe/rGO nanocomposites can be ascribed to the synergic effects between NiSe nanoparticles and rGO, which provide high conductivity and large specific surface area, indicating NiSe/rGO as very promising Na/Li storage materials.

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 547
Author(s):  
Jiwoong Oh ◽  
Jooyoung Jang ◽  
Eunho Lim ◽  
Changshin Jo ◽  
Jinyoung Chun

In this study, sodium cobalt fluoride (NaCoF3)/reduced graphene oxide (NCF/rGO) nanocomposites were fabricated through a simple one-pot solvothermal process and their electrochemical performance as cathodes for Li-ion batteries (LIBs) was investigated. The NCF nanoclusters (NCs) on the composites (300–500 nm in size) were formed by the assembly of primary nanoparticles (~20 nm), which were then incorporated on the surface of rGO. This morphology provided NCF NCs with a large surface area for efficient ion diffusion and also allowed for close contact with the conductive matrix to promote rapid electron transfer. As a cathode for LIBs, the NCF/rGO electrode achieved a high reversible capacity of 465 mAh·g−1 at 20 mA·g−1 via the conversion reaction, and this enhancement represented more than five times the reversible capacity of the bare NCF electrode. Additionally, the NCF/rGO electrode exhibited both better specific capacity and cyclability within the current density testing range (from 20 to 200 mA·g−1), compared with those of the bare NCF electrode.


RSC Advances ◽  
2014 ◽  
Vol 4 (43) ◽  
pp. 22551-22560 ◽  
Author(s):  
Rahul S. Diggikar ◽  
Dattatray J. Late ◽  
Bharat B. Kale

The unique morphologies of reduced graphene oxide (RGO) and RGO–PANI nanofibers (NF) composites have been demonstrated. The enhanced electrochemical performance was observed for honeycomb like RGO–PANI NFs composites.


2019 ◽  
Vol 3 (6) ◽  
pp. 1427-1438 ◽  
Author(s):  
Xing Li ◽  
Yongshun Bai ◽  
Mingshan Wang ◽  
Guoliang Wang ◽  
Yan Ma ◽  
...  

Silicon is considered as an anode for next generation lithium ion batteries owing to its low discharge potential (∼0.4 V vs. Li/Li+) and high theoretical specific capacity (3500 mA h g−1).


2015 ◽  
Vol 3 (35) ◽  
pp. 17951-17955 ◽  
Author(s):  
Shibing Ni ◽  
Jicheng Zhang ◽  
Jianjun Ma ◽  
Xuelin Yang ◽  
Lulu Zhang

A high performance Li3VO4/N-doped C anode was successfully prepared, which shows high specific capacity and excellent cycle performance.


NANO ◽  
2020 ◽  
Vol 15 (09) ◽  
pp. 2050117
Author(s):  
Meng Sun ◽  
Sijie Li ◽  
Jiajia Zou ◽  
Zhipeng Cui ◽  
Qingye Zhang ◽  
...  

ZnMn2O4 nanoparticles (NPs) wrapped by reduced graphene oxide (rGO) were fabricated via a two-step solvothermal method and used as an anode material for lithium-ion batteries (LIBs). Compared to pure ZnMn2O4, the ZnMn2O4 NPs/rGO composites deliver higher capacities of 1230 mAh g−1 and 578 mAh g−1 after 200 cycles at a current density of 100 mA g−1 and 500 mA g−1, respectively. The enhanced electrochemical performance of ZnMn2O4 NPs/rGO composites is mainly attributed to a distinctive structure (ZnMn2O4 NPs surrounded by flexible rGO), which can promote the diffusion of Li+, accelerate the transport of electrons and buffer volume expansion during the Li+ insertion/extraction process. Furthermore, the rGO sheets can effectively prevent the agglomeration of ZnMn2O4 NPs, thus, improving structural stability of the composites. The excellent electrochemical performance indicates that such ZnMn2O4 NPs/rGO composite structure has a great potential for high-performance LIBs.


Sign in / Sign up

Export Citation Format

Share Document